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Abstract
Weighted bandwidth allocation is a powerful abstraction

that has a wide range of use cases in modern data center net-
works. However, realizing highly agile and precise weighted
bandwidth allocation for large-scale cloud environments is
fundamentally challenging. In this paper, we propose Söze,
a lightweight decentralized weighted bandwidth allocation
system that leverages simple network telemetry features of
commodity Ethernet switches. Given the flow weights, Söze
can effectively use the telemetry information to compute and
enforce the weighted bandwidth allocations without per-flow,
topology, or routing knowledge. We demonstrate the effec-
tiveness of Söze through simulations and testbed experiments,
improving TPC-H jobs completion time by up to 0.59× and
0.79× on average.

1 Introduction
As a fundamental building block of the modern data center,
the transport layer provides accurate and reliable data delivery
between machines. Transport solutions in use by data center
networks today [12, 33, 35, 61] aim to achieve a fixed goal,
where the bandwidth resource sharing is generally fair and
the actual allocation only depends on the traffic pattern. Un-
fortunately, since modern cloud applications’ performance
goals [3, 4, 8, 25, 43] for data transmissions are diverse and
may change over time [49], such a rigid resource allocation
strategy clearly cannot suit every application’s need perfectly.

To better serve the various and evolving applications,
weighted allocation can be a powerful abstraction [37,44]. For
example, when a flow with weight 3 shares a bottleneck link
with another flow with weight 1, the bandwidth is allocated
75% and 25%. Weighted allocation has many potential use
cases. For example, important jobs or latency-sensitive jobs
can be prioritized for shorter waiting time [17, 26]; within a
job, resources can be prioritized for critical paths to reduce
the job completion time [48]; service-level objectives can be
achieved by carefully assigning weights [42].

Although weighted bandwidth allocation can be extremely

helpful and provide unique benefits for applications [37, 44],
the reason that blocks its wide deployment is the scale of
the cloud data center [10, 15]. Realizing the flow rates that
conform to a weighted bandwidth allocation policy at scale
is challenging. Existing systems try to implement and en-
force the policies through either packet scheduling [21, 52]
on switches or using a logically centralized bandwidth alloca-
tor together with rate shapers [32, 51]. On one hand, packet
scheduling-based implementation is limited by the small num-
ber of per-flow queues and the coarse granularity of weight
parameters supported by switch hardware [41, 60]. On the
other hand, a logically centralized bandwidth allocator-based
implementation has high communication latency to gather
and dispatch information and high computation cost to calcu-
late the optimal allocation [27, 32]. Thus, realizing weighted
bandwidth allocation for cloud networks with fine granularity,
high agility, and high scalability remains an open challenge.

In this paper, we provide all the above properties for
weighted bandwidth allocation with our approach called Söze.
Our insight is that we need only one network telemetry along
a flow’s path, regardless of the number of hops, to solve the
weighted bandwidth allocation problem at the bottleneck. Fur-
thermore, instead of using this telemetry to gauge congestion
levels like in traditional use cases of network telemetry, this
telemetry is cleverly repurposed to signal the correct weighted
fair share at the bottleneck.

With Söze, every flow can be associated with a weight re-
gardless of the number of flows or the size and topology of
the network (scalability, generality), each flow’s weight can
be fine grain adjusted instantaneously at the host (granularity,
flexibility), and the weighted bandwidth allocation is real-
ized in a matter of several RTTs (agility). These capabilities
provide a building block for supporting various application
scenarios such as critical path prioritization, coflow straggler
mitigation, intelligent bandwidth sharing across jobs, altruis-
tic bandwidth sharing, shortest flow prioritization, etc.

Our contributions can be summarized as follows:
• Söze shows that one network telemetry is enough to re-

flect the network sharing status and serve as a channel



to coordinate multiple flow senders, thus offering an ef-
fective control knob for weighted bandwidth allocation.

• Söze provides a novel decentralized framework to en-
force the weighted max-min fair allocation for different
flows across the network with high precision and agility,
without per-flow, topology, or routing information.

• We show that Söze can be seamlessly incorporated into
existing transport layer mechanisms such as TCP and
eRPC. In the evaluation, we show that Söze reduces the
job completion time for the TPC-H benchmark up to
0.59× and 0.79× on average.

This paper is organized as follows. §2 motivates weighted
bandwidth allocation and discusses challenges in designing
an ideal weighted bandwidth allocation system in a large-
scale cloud. §3 introduces our proposal Söze with thorough
design details and proves that leveraging the network teleme-
try feature can achieve highly accurate weighted bandwidth
allocation. §4 and §5 provide implementation details and ex-
tensive experiments to demonstrate the effectiveness of Söze.
§6 discusses related work and we conclude in §7.

2 Motivation

In this section, we firstly introduce the benefits of weighted
bandwidth allocation for the network (§2.1); Next, we list the
essential requirements for an efficient and powerful weighted
allocation solution (§2.2); Lastly, we motivate that the in-
network telemetry (INT) can be a low-cost and efficient solu-
tion to achieve weighted bandwidth allocation (§2.3).

2.1 Weighted Bandwidth Allocation
Instead of a rigid bandwidth allocation strategy, weighted
bandwidth allocation can give modern applications extra flex-
ibility to adapt the underlying bandwidth allocation intention-
ally for better performance, which benefits many applications,
like ML training, Spark/Hadoop, databases, and RPCs. With
the increasing demand for giant applications [11,55] and low-
cost function services [24, 57], modern cloud applications
tend to rely on the data center network for efficient data ex-
change under distributed execution. Take distributed training
with data parallelism as an example, the tensors at different
layers can be assigned different priorities for accessing the
bandwidth resource, in order to overlap the communication
and computation process and accelerate the overall training
process [28, 29, 47]. For map-reduce applications such as
Spark and Hadoop, prioritizing the straggler flow over others
during the shuffle operation is a common technique to shrink
the job competition time [18, 19].

2.2 Challenges
As the key infrastructure for interconnecting hardware in the
cloud, one would expect the network to provide efficient and

fine-grained weighted bandwidth allocation services to meet
the various requirements from the applications. However,
networks in the production environment only provide coarse-
grained differentiation, such as traffic aggregate classes with
bandwidth reservations or strict priorities. The challenges in
providing efficient and fine-grained weighted bandwidth allo-
cation services for the network come from multiple aspects:

Bottleneck resource recognition. Unlike many other com-
putational and storage resource, the data center network has
multiple layers and each layer contains multiple alternative
connections, where the routing of each flow is determined
with random seeds and is difficult to predict. For the flow
that utilizes such networks, its path will travel multiple hops
where every hop has a bandwidth capacity. On different hops,
the flow will contend and share the bandwidth resources with
an unpredictable group of other flows, but only one of the
hops will become the bottleneck and limit its sending rate.
Recognizing the bottleneck resource is therefore crucial for
determining the weighted allocation of bandwidth resource
but the bottleneck resource is highly unpredictable.

High scalability with large network size and high con-
currency. Besides recognizing bottleneck resources, the in-
tended system size adds another dimension of challenge: 1)
Massive information: the amount of information we can col-
lect from the network is massive, including the network topol-
ogy, link bandwidth, and each flow’s sender/receiver/routing.
How to filter and pick the most useful information and reduce
the input to the algorithm can be challenging. 2) Global op-
timality: since the weighted bandwidth allocation needs to
be enforced at the bottleneck resource to be effective, how to
reach this global optimal state with low cost and consistently
fast solving time is also challenging.

Fine-grained weighted allocation. To support fine-
grained policy changes, the weighted bandwidth allocation
system should accommodate flow weight with fine granularity
and enforce the desired allocation with high precision. How-
ever, due to the network’s scale, fine granularity and high accu-
racy are hard to obtain cost-effectively through high-precision
computations in switch ASICs. Fine-grained weighted band-
width enforcement must require careful algorithm design in-
stead of relying on switch hardware capability.

High agility in updates and changes. A weighted band-
width allocation policy needs to be realized quickly, but this
is challenging because the network environment dynamics
can affect the allocations, and the solution must react quickly.
Firstly, the network condition may change due to updates,
like new flow arrivals, existing flow finishes, link failures, and
routing changes. Secondly, the application may update the
task weight based on the runtime information or user input.

2.3 Use Telemetry for Coordination

In-network telemetry (INT) is a common feature in switch
ASICs today [5–7] that enables better network visibility by in-



serting the fine-grained switch-local information (e.g., queue-
ing delay, timestamp, transmitted bytes, etc.) into the packet
headers. The typical usage for the INT data is network moni-
toring, informing the network operator about the current net-
work status, such as the queue depth or the link utilization.
INT data is quantitative so that it can describe the status of the
network accurately in a timely manner. In this paper, we want
to use the INT feature to help achieve weighted bandwidth
allocation. To start, we introduce the INT with a realistic ex-
ample and demonstrate why the INT function can be used for
information exchange and coordination.

Typical INT data include queueing level, link utilization,
etc. As a concrete example, let us use queueing delay for
demonstration: 1) Multiple senders create an incast scenario
on one link, and this link collects the queueing delay as the
INT and informs all senders through packet headers. 2) The
queueing delay may change if any sender changes its send-
ing rate, but the actual change of queueing depends on the
behavior of all senders together. 3) All flow senders will have
the same observation about the queueing delay, such as the
queueing increases if every sender increases its rate. 2) and 3)
imply that if flow senders change their behavior, the changes
may be reflected in the queueing delay, and all the senders
will sense the change at the same time. In this way, an infor-
mation exchange channel can be constructed using queueing
delay. Thus, we argue for a distinctly different usage for INT:
using passive INT data to coordinate different hosts.

Such an information exchange channel through INT data
has many unique benefits. First, the in-network telemetry fea-
ture on switches is simple and low-cost compared to other
types of information exchange, which preserves deployability
and scalability. Second, the in-network telemetry data is inher-
ently quantitative, which can be used to achieve fine-grained
goals with precision. Thirdly, the in-network telemetry fea-
ture can operate on a per packet granularity at full line rate,
therefore timely information exchange can be achieved at
very high speed. All of the above properties of in-network
telemetry are favorable for designing a low-cost scalable sys-
tem for bandwidth allocation, but we still need to design an
algorithm to make the best use of the INT data.

3 Design

Driven by the observations in §2, we propose Söze, a de-
centralized weighted bandwidth allocation system for large-
scale and highly dynamic cloud environments. Given the flow
weights, Söze can identify the bottleneck and enforce the
weighted max-min fair bandwidth allocation with only one
network telemetry. In this section, we firstly show how Söze
achieves the weighted allocation on a single switch, where
the bottleneck is always the switch egress (§3.1); Then, we
show that Söze can be applied to arbitrary data center net-
works, where the bottleneck can be any hop (§3.2); Lastly, we
summarize our system design (§3.3) and discussions (§3.4).

3.1 A Single Switch Scenario
In this subsection, we show step-by-step how we derive a
decentralized resource allocation algorithm from a straw-man
algorithm. For the goal proposed in §3.1.1, we first give a
simple decentralized algorithm where a lot of information
needs to be collected and exchanged in §3.1.2; then we try to
reduce the amount of information to be very tiny in §3.1.3;
finally, we pick only one piece of information and transform
it into a different format, to make telemetry easy and practical
on the switches in §3.1.4.

3.1.1 Goal: Decentralized Weighted Allocation

Denote the flows on one link are { f0, f1, ..., fn}, their spec-
ified weights are {w0,w1, ...,wn}, and the hop bandwidth is
B. After converging to weighted bandwidth allocation, the
weighted fair-share should be B

w0+w1+...+wn
, and flow fk’s rate,

rk, should be:

rk =
wk

w0 +w1 + ...+wn
·B (1)

However, calculating this weighted allocation requires ob-
taining the sum of all flows’ weights, where a centralized
controller is usually required. No matter when a new flow
joins or an existing flow wants to change the weight, the
centralized controller needs to be notified. Thus, this could
become the bottleneck of the whole system and prevent the
weighted service from being agile, accurate, and scalable.

3.1.2 Straw-man: Massive Information Exchange

A straw-man decentralized solution can be given as follows:
each flow fi could send its weight specification wi to every
other flow, then every flow sender is able to calculate its rate
with Equation 1 directly.

However, the problem with this straw-man solution is that
the communication overhead is too high for data center net-
works. If there are n numbers of flows on the link, the total
amount of information that needs to be exchanged is O(n) for
each flow sender.

3.1.3 Reduce the Information Exchange

To reduce the information exchange for achieving the
weighted resource allocation, Söze splits Equation 1 into two
equations. And those two equations are achieved if and only
if Equation 1 is achieved (proved in §B):r0 + r1 + ...+ rn = B

r0

w0
=

r1

w1
= ...=

rn

wn

(2)

For the first equation in Equation 2, Söze finds that the sum
of all flows’ rates is the arrival rate of the link; For the second
equation in Equation 2, Söze further reformats the equation



with respect to max( ri
wi
) and min( ri

wi
). Interestingly, now we

are able to rewrite Equation 2 from any single flow k’s view
in a decentralized manner:

link_arrival_rate =
n

∑
i=0

ri = B

rk

wk
= min

i∈[0,1,...,n]

(
ri

wi

)
= max

i∈[0,1,...,n]

(
ri

wi

) (3)

If and only if every flow individually observes that Equa-
tion 3 has been achieved, the weighted allocation is achieved
for all flows. Thus, potentially, only the information about
whether ∑

n
i=0 ri = B and rk

wk
= min( ri

wi
) = max( ri

wi
) are sat-

isfied is required to be exchanged. In this way, Söze largely
reduced the exchanged information from O(n) to O(1) for
each flow sender.

3.1.4 Conduct Information Exchange with a Conver-
gence Algorithm and In-network Telemetry

Although the information’s content is determined, how to con-
duct the exchange remains a problem. In this subsection, Söze
leverages the in-network telemetry and designs a convergence
algorithm for every flow to converge to the equilibrium in
Equation 3 with zero coordination between flows.

1 Use the link itself for information exchange. Previous
methods usually exchange information only among servers
(flow senders), either in a master-slave architecture or an
all-reduce architecture. However, the information exchange
among servers is always off-path and leads to extra overhead.
Thus, Söze uses an on-path device for information exchange:
the link. Since flows compete for the link bandwidth resource,
they must travel this link, which makes it the best channel to
deliver information among servers or flow senders.

A specific new technique for links: in-network telemetry.
Söze leverages a new and common feature of the commod-
ity switches: In-network Telemetry (INT), which allows the
switch to tag some information on the packet. Specifically,
Söze only uses one of the telemetry data — queueing delay.
The queueing delay is tagged in the data packet header on
the forwarding path and reflected back to the sender with the
ACK packet header on the reverse path. Only the queueing
delay on the forwarding path is required and it is represented
by a single 2-byte field in each packet header. This opera-
tion is simple and does not require the use of programmable
switches.

2 Queueing delay inherently implies link arrival rate.
The queueing delay’s dynamic inherently reflects the link ar-
rival rate, more specifically, the first derivative of the queueing
delay is the difference between the link arrival rate and the
link bandwidth. Denote the queueing delay as D, link arrival
rate as R, and link bandwidth as B:

dD
dt

=
R−B

B
, ∀D > 0 (4)

Figure 1: Target function must be monotonically decreasing.
p is the queueing delay scaling and k is always > 0 for full
utilization; α and β should be set to the highest and lowest
rate-per-weight, depending on the scenarios.

As shown in Equation 4, as long as the queueing delay
is stabilized around a non-zero value, the link arrival rate is
equal to the bandwidth. Since each flow could individually
observe queueing delay, the first equation in Equation 3 can
be verified in a decentralized manner.

3 Design different queueing delays to represent differ-
ent weighted fair-share. Since the queueing delay can be
stabilized around any value to indicate the link arrival rate,
the actual value of the queueing delay can be used to repre-
sent another selected property. In Söze, different queueing
delays represent different weighted fair-share with a unique
one-to-one mapping, where the weighted fair-share w f s is
defined as w f s = ri

wi
from Equation 2. Specifically, the larger

the weighted fair share, the smaller the queueing delay. In
addition, we denote a flow’s rate divided by its weight as its
"rate-per-weight". For networks in weighted allocation status,
each flow’s rate-per-weight is equal to the w f s.

target_delay = T (
ri

wi
)

T (x)< T (y),∀ x,y where x > y
(5)

With this relation between the queueing delay and the
weighted fair share, each flow could compare its rate-per-
weight with the w f s value from the queueing delay and find
out if it is smaller or larger than the indicated value. In this
way, a possible convergence algorithm can be created to con-
verge to the second equation in Equation 3.

4 Provide a convergence algorithm that uses insights
2 and 3 simultaneously. The convergence algorithm will
converge to a final steady state indicated by Equation 1, where
the weighted fair share is B

w0+w1+...+wn
, and the queueing de-

lay on that link is a function of the weighted fair share.

The target function differentiates flows with larger
r
w from flows with smaller r

w , so that the function is
monotonically-decreasing as in Figure 1. With this, each flow



(a) Convergence to the target
queueing delay.

(b) Convergence to weighted fair-
share.

Figure 2: Convergence for 4 flows on a single switch.
calculates a queueing delay according to their own r

w .

T
( r

w

)
= p ·

ln(α)− ln( r
w )

ln(α)− ln(β)
+ k (6)

In Equation 6, k is the minimal queueing delay when the
link is saturated by one flow; p is the queueing delay scaling
to differentiate between different flows. α and β indicate the
most frequent range of weighted fair share: α is the highest
rate-per-weight, which is usually the link bandwidth divided
by the smallest weight; β is the lowest rate-per-weight, which
can be determined with the traffic pattern. The update interval
is referred as ∆t, where ∆t = RT T

CWND for per-packet update.
The update function tries to change a flow’s sending rate

so that its target delay can match the observed queueing delay.

U
( r

w
,D
)
=

(
T−1(D)

r
w

)m

(7)

In Equation 7, m is a smoother parameter smaller than 2,
which is tunable to achieve either faster convergence or more
stable final state.

In Algorithm 1, we give an incredibly simple decentralized
algorithm for each flow sender to adjust their rate and con-
verge to weighted allocation. After receiving the queueing
delay information from the link, each flow calculates a ratio
based on its current rate-per-weight and the received queue-
ing delay, then updates the rate accordingly. From any initial
bandwidth allocation, the final allocation will always comply
with the weighted fair share as in Equation 1.

3.1.5 Proof of Convergence to Weighted Allocation

Although the above decentralized algorithm has no explicit
information exchange, the queueing delay that contributed by
all the flows is also observed by all the flows, which conducts
an efficient information exchange towards the weighted band-
width allocation. With the above design, we are able to have
the following two lemmas:

Lemma 3.1: Convergence to Weighted Fairness

Söze converges to the weighted fairness on a link if and
only if 0 < m < 2 in the update function.

Algorithm 1: Söze’s Rate Adjustment Algorithm
Input: wk,rk: weight and rate for flow fk;

1 Function MainFunctionForFlowK():
2 signal = RecvPktWithINT()
3 if now− last_update > rtt then
4 ratio = U

(
rk
wk
,signal

)
5 rk = rk · ratio

Lemma 3.2: Convergence to Target Queueing

Söze converges to the target queueing delay level, if
and only if p > ∆t

2 · [ln(α)− ln(β)]

The idea for proving the above two lemmas is that all the
flows together contribute to the queueing and maintain the
queueing at the target delay level. The observed delay is the
same across all flows, which provides a guidance for achieving
fairness; The observed delay is maintained at a certain level,
which provides the guarantee of achieving full utilization. The
complete proof is included in Appendix C and Appendix D.

3.2 Arbitrary Network Scenario
Based on the weighted allocation in a single-switch scenario
(§3.1), Söze also achieves weighted bandwidth allocation in
the arbitrary network scenario, such as the widely used multi-
layer network architecture in production data centers. In this
section, we firstly introduce the goal of the weighted resource
allocation in §3.2.1; Then, to accommodate the complex sce-
nario, we explore the properties of the flow bottleneck in
§3.2.2; Lastly, we extend the collected INT signal to be the
maximum queueing delay from all links on the path in §3.2.3.

3.2.1 Goal: Weighted Max-min Allocation

For the network-wide scenario, a flow may travel multiple
links along the path and contend with different sets of other
flows. However, for any flow traveling multiple hops, there
will be at least one bottleneck link, which determines the
flow rate. Thus, the weighted allocation should happen on
the bottleneck link for any flow, which is also the goal of
weighted max-min fair allocation. According to the previous
papers, the weighted max-min fair is defined as follows:

Definition 3.1: Weighted Max-min Fair [14, 38]

For all flows { f 1, ..., f n} in the network, denote
their weight to be {w f 1, ...,w f n}. A rate allocation
{r f 1, ...,r f n} is weighted max-min fair when for each
flow f , any increase in r f would cause a decrease in the



Figure 3: Bottleneck changes in weighted max-min fair: blue
flow weight: 3, red flow weight: 2, yellow flow weight: 1.

transmission rate for some flow f ′ satisfying
r f ′
w f ′
≤ r f

w f
.

In the weighted max-min fair, each hop divides the band-
width to let each bottleneck flow have the same "rate-per-
weight". As Figure 3 shows, the "rate-per-weight" is the same
for the blue flow and the red flow, and the rate allocation is
equivalent to having "weight" number of individual flows.

With the above analysis, we realize that recognizing the
bottleneck becomes the new challenge when achieving the
weighted max-min fair in arbitrary networks. In the next sub-
section, we will show how to simply recognize the bottleneck
hop and obtain the INT signal from the bottleneck.

3.2.2 The Bottleneck Hop Properties

In §3.1, Söze already achieves the weighted bandwidth allo-
cation on a single switch in a decentralized manner. Thus, in
order to achieve the weighted max-min fair, the major chal-
lenge is to recognize the bottleneck hop for each flow, then
achieve weighted allocation on the bottleneck hop. According
to the definition, achieving fair allocation on the bottleneck
hop for every flow is just achieving weighted max-min fair.

From the definition, we could derive a lemma that could
help us identify each flow’s bottleneck hop, namely, the hop
that prevents the flow from increasing the rate further.

Lemma 3.3: Bottleneck Hop Properties

When achieving weighted max-min fair, each flow will
have the largest rate-per-weight among all flows on its
bottleneck hop and not on any other saturated hop.

Intuitively, a flow must have the largest rate-per-weight
on its bottleneck hop, otherwise, it could take more band-
width from the flows on this hop who has a higher rate-per-
weight; a flow cannot have the largest rate-per-weight on a
non-bottleneck saturated hop, since there must be some other
flow on that hop could steal more bandwidth from it. The full
proof of the above lemma is included in the Appendix E.

With Lemma 3.3, we could easily know that if a flow has
the largest rate-per-weight only on its bottleneck hop, then
among all hops that this flow travels, the bottleneck hop must
have the highest queuing delay. Because on non-bottleneck
hops, there must be a flow with larger rate-per-weight, and

And our target function is monotonically decreasing. Thus, the
queueing delay on any other hops is lower than the bottleneck
queueing delay. The proof is included in Appendix E.

3.2.3 Recognize Bottleneck with maxQD Signal

With the above properties, we could know that a flow does not
have the largest rate-per-weight on hops other than the bot-
tleneck hop. Thus, the bottleneck hop always has the highest
queueing delay for that flow. In the single-switch scenario, we
use the queueing delay (QD) signal from one hop to achieve
the weighted allocation on that hop. Similarly, for a flow that
travels multiple hops in an arbitrary network, we can use the
maximum per-hop queueing delay (maxQD) signal to achieve
weighted allocation on the bottleneck hop of that flow.

The algorithm does not need to know on which hop the
maxQD signal was collected, switches simply compare and
replace the packet header to keep the maxQD signal is enough
to achieve weighted max-min fair on the bottleneck hop. With
this solution, maxQD becomes the signal in Algorithm 1.

With this new INT signal, we could derive our theorem
on achieving weighted max-min fairness with Söze. The full
proof is given in Appendix E.

Theorem 3.1: Weighted Max-min Fairness

For every flow in an arbitrary networks, Söze converges
to a weighted max-min fair allocation, if and only if 0 <
m< 2 in the update function and p> ∆t

2 · [ln(α)− ln(β)]
in the target function.

3.3 System Design Summary
With all the above analysis on how to achieve weighted max-
min fairness in arbitrary networks, we are able to give our
system design in this section.
Collect maxQD in data packet and reflect in ACK packet.
As shown in Figure 4, each packet contains a fixed-length
packet header to store the maxQD INT data, which usually
takes 2 bytes in the field. When the data packet travels the
forwarding path, it compares and keeps the highest per-hop
queueing delay on each hop. After reaching the receiver side,
the receiver host will attach the maxQD information to the
ACK packet and send it back to the sender. Thus, the maxQD
signal is collected at the sender side for every ACK packet.
Host control with the INT signal. The rate control is con-
ducted at the sender host. Firstly, after receiving the INT sig-
nal from the packet, the host will parse the maxQD data from
the packet header and use it to determine the multiplicative
rate update ratio. Then, the rate can be controlled with either
a traditional CWND specification or with a rate-based specifi-
cation, such as the pacing in some CC algorithms [35]. Note
that, when using the window-based protocol, we are still using
the "rate" rather than the congestion window directly. The



Figure 4: System design of Söze.

rate of the flow needs to be calculated with CWND and RT T
by rate = CWND·pktsize

RT T . Lastly, Söze serves both as congestion
control and as a weighted resource allocation protocol. Thus,
Söze should be on the networking stack, either in the kernel
or running on the NIC hardware. The applications should give
the weight specification through an API.

Conduct rate update in per-packet manner. Typical CC
algorithm conducts rate update for each RTT, because they
are using AIMD-based algorithm for convergence. In Söze,
the convergence to weighted fairness is performed with a new
adaptive-update algorithm in Algorithm 1. Moreover, each
individual maxQD signal can reflect the network condition
and calculate the rate update. Thus, achieving a per-packet rate
update becomes beneficial to weight enforcement, making the
convergence faster and stabilizing the rate enforcement.

3.4 Discussion

Weight distribution policy. With Söze, each application
could individually determine the weight of its flows and obtain
the corresponding bandwidth from the network. However, if
each application increases its weight to maximum blindly, the
weighted fairness will not benefit any application. For practi-
cal usage, there should be guidelines for weight determination
and restrictions on the application’s behavior.

The network operator could define any usage policy based
on their specific workloads and service-level objectives,
which, we emphasize, is not the focus of this paper. We use
one simple idea for a discussion as follows: 1) Each appli-
cation has a total weight that it can distribute across differ-
ent hosts and flows, but the application can pay the service
provider to get more total weight. 2) An application can de-
crease the weight of any flow when possible, namely, not
fully utilize all the weights. 3) When an application wants to
increase the weight of flows, some other flows in the same ap-
plication need to decrease their weight so that the sum of the
weights in an application is generally the same. This simple
policy gives applications the ability to be altruistic to others,
but when the application wants to benefit themselves, some
penalties will be added to regularize their behavior.

Policy enforcement monitor. For applications inside the
cloud, Söze expects them to follow the policy for weight
distribution from the cloud provider. However, there is still
the possibility that an application does not follow the policy.
To monitor whether all the applications’ behavior follows

the policy, a logging system could be used. 1) Whenever the
networking stack receives a weight specification from the ap-
plication through the API, Söze will log the timestamp, flow
ID (e.g., 5-tuple), and the specified weight. 2) Periodically,
each application’s weight update logs will be gathered to a
policy checker, where the policy will be verified through the
logs from multiple machines.
Queuing as INT signal. Although in this paper we use queu-
ing delay as the feedback signal, the queuing level is con-
trolled by the target function in Equation 6. Thus, the queue
can be maintained at a relatively low level, as shown in Fig-
ure 13. Besides queuing delay, the design of Söze also applies
to other INT signals, such as link utilization or ECN marking
ratio. For different signals, the properties of the system also
vary, which will be discussed in future studies.

4 Implementation

We implemented Söze with both the Linux kernel module to
replace Linux’s default Cubic transport and kernel-bypassing
network transport — eRPC. We also provide simulator imple-
mentation on the NS-3 simulator for large-scale experiments.
Switch implementation. We implement the queueing delay
signal on Tofino switches [9] with 9 lines of code. When every
packet reaches the exit point of the switch, the switch uses
the low-pass filter LPF() function to collect the queueing
signal in the "sampling mode". By controlling the sampling
interval, we can adjust the signal to be each individual packet’s
queueing delay or smoothed queueing delay over multiple
packets. In Söze, the default setting is to output the smoothed
queueing delay over 10 µs.

1 Lpf<bit<32>, bit<10>>(size=1) lpf_queue; # type="SAMPLE"
2 queue_input = (bit<32>) eg_intr_md.deq_timedelta;
3 queue_output = lpf_queue.execute(queue_input, 0);

Host implementation 1: kernel module. We implemented
a prototype of Söze as a Linux kernel module with 241 lines
of code, which can be installed on Linux without recompiling
the kernel. By replacing the kernel module for congestion
control, we could receive the maximum per-hop queueing
signal in a TCP option field. For the functions exp() and log()
in Söze, we implemented efficient approximation functions
without using the STL library. For application integration, we
added one TCP socket option and used that field to configure
the weight for this specific TCP socket. To deliver the weight
specification, we allow the application to modify the value
of the TCP socket option field as the weight value. For Söze,
the parameters are set to: p = 20µs, k = 3µs, m = 0.25. As a
baseline, the default algorithm for Linux is TCP-Cubic. The
switch port bandwidth is set to 25 Gbps.
Host implementation 2: eRPC. Alternatively, we also imple-
mented Söze in an RPC library — eRPC [31], an open source
RPC library that supports Ethernet, InfiniBand, and RoCE.



We add an additional field in the erpc header to carry the max
queueing delay information, and use the same Tofino switches
to attach those signals to each data packet. We replace the
Timely CC algorithm in erpc with Söze and added supporting
features, such as packet header changes and queueing signal
processing, in 1972 lines of code. For application integration,
eRPC uses userspace networking with polling, so applications
can directly communicate with eRPC through the API and
reconfigure the weight parameter for eRPC connections. The
parameters for Söze are set to: p = 20µs, k = 3µs, m = 0.25.
The bandwidth is 25 Gbps.

NS-3 simulator implementation. We also implement Söze
in NS-3 [2]. The switches in the simulator have been cus-
tomized to provide the maximum per-hop queueing delay.
The packet header with "maxQD" will be updated on every
hop to keep the maximum queueing delay so far. This maxQD
information is sent back to the sender through the ACK pack-
ets. For Söze, unless otherwise noted, the default parameters
in the target function are set as p = 20µs, k = 3µs, m = 0.25.
For DCQCN, we use all the parameters suggested in [61, 62].
For HPCC, all the original settings from [35] are kept unless
noted: WAI = 80 Bytes, maxstage = 5, and θ = 95%.

Principles for choosing parameters. The choice of the pa-
rameters is based on the following principles: p controls the
granularity of the INT signal, a higher p value leads to higher
queuing delay but less rate oscillation, so we tend to choose
the minimal p value that gives a relatively low rate enforce-
ment oscillation. k controls the base queuing delay, which
may cause the utilization to be less than 100% if k is too
small. Thus, we choose the minimal k that provides full link
utilization. m controls the convergence speed, higher m leads
to faster convergence but worse rate oscillation. So, there is a
wide spectrum of m that may suit different workload patterns.

5 Evaluation

We will evaluate Söze on both the testbed and the large-scale
simulator. Firstly, we demonstrate application use cases for
Söze on the eRPC testbed in §5.1; Secondly, we also evaluate
the efficiency of Söze as the congestion control protocol alone
and compared with existing industry solutions in §5.2; Lastly,
in §5.3, we conduct micro-benchmark experiments in the
simulator to show that Söze can achieve fine-grained weighted
max-min fair allocation rapidly on a large scale.

eRPC testbed setup. For the eRPC testbed, we connect four
servers with DPDK-capable CX-4 NIC to a Tofino-1 pro-
grammable switches in a star topology. The flow is the RPC
write request sent from one host to another, where the request
size is 7 MB and the response size is 32 bytes. When multiple
hosts send write requests to the same host, the switch egress
port to that destination host will become the bottleneck. In
the eRPC testbed, we compare our scheme with Timely [39],
the default CC used in eRPC.

Figure 5: Scenario for critical path acceleration.

(a) Fair allocation. (b) Weighted: f1:f4=2:1.

Figure 6: Reduce completion time by prioritizing critical path.

NS-3 simulator setup. In the NS-3 simulator, we built a net-
work with 1024 servers and 320 switches in a fat-tree topology.
The simulator uses 100 Gbps links with 1 µs link delay, 32
MB buffer size, and 1000 bytes packet payload size. In the
simulator, we compare Söze with DCQCN and HPCC. All
the parameter settings are adopted from their original paper.

5.1 Application Case Study
Firstly, we evaluate the application benefits from Söze in
several scenarios on the eRPC testbed. The scenarios below
are a small subset of the benefits for demonstration. We then
evaluate Söze on the TPC-H jobs in the NS-3 simulator.

5.1.1 Prioritize Critical Path inside a Job

Consider stage-based applications such as map-reduce, dis-
tributed matrix multiplication, DNN training, etc., where there
are several computation and communication phases. The end-
to-end application performance depends on the performance
of the critical path. Enabled with modern application-level
abstractions and critical-path analysis [36, 45, 58], relative
priorities between flows of different paths can be determined
prior to execution, and Söze can allocate bandwidths between
flows according to those priorities.

As shown in Figure 5(a), a job consists of 4 flows: flow f1
has 20 GB of data, flow f2 has 10 GB, flow f3 has 10 GB,
while flow f4 has 20 GB. As shown in Figure 5(b), f2 can
only start when flow f1 finishes, and f3 can only start when f2
finishes. And flow f1 and flow f4 share the same bottleneck.

When fairly sharing the resource between flow 1 and flow
4 as in Figure 6a, the start of flow 2 will be delayed, and the
job completion time is 117 seconds. Once we recognize the



(a) Fair allocation for f2. (b) Straggler mitigation for f2. (c) Rates after mitigation. (d) Weights after mitigation.

Figure 7: Mitigate straggler.

(a) Experiment setup. (b) Fair allocation. (c) Weighted allocation. (d) Aggregated rates.

Figure 8: a) The flows f1 and f2 belong to job 1, and the flows f3 and f4 belong to job 2; b) The fair allocation equally allocates the
bandwidth among all four flows, and rebalances when any flow finishes. Under the fair allocation, job 2 finishes at 82 seconds. c)
The weighted allocation will update the weights at time 50 s, letting f3 and f4 finish at the same time and reducing the completion
time for job 2 to 79 seconds; d) For the weighted allocation, each job always has the same aggregated bandwidth as before the
weight changes, so that the bandwidth rebalancing only happens within a job.

critical path, we can prioritize flow 1 over flow 4 by setting
their weight to be 4

3 and 2
3 , so that flow 1 gets twice bandwidth

than flow 4 and the sum of their weights still add to 2. As
shown in Figure 6b, prioritized allocation reduces the job
completion time to 96 seconds.

5.1.2 Identify and Mitigate Stragglers inside a Coflow

A common technique for mitigating stragglers in a coflow
is to dynamically change the inter-flow priority. Such a sce-
nario can be an interesting use case for Söze. Due to the
zero-coordination and fast-convergence properties, Söze can
implement the weighted bandwidth allocation with arbitrary
granularity among the flows of a coflow to mitigate stragglers,
and thus minimize the coflow-completion time.

This experiment tries to identify the straggler for an all-
shuffle job. The figure focuses on two flows inside one coflow,
where flow f2 is twice as large as flow f1. When the resources
are fairly shared by f2 and background flows, flow f2 will
decrease the rate as shown in Figure 7a; To mitigate the
straggler and make flow f2 finish around the same time as
flow f1, we monitor the progress of flow f2, if the progress
cannot catch up with f1 under current sending rate, the weight
of flow f2 will increase as in Figure 7d, and flow f2 will take
more bandwidth from the background traffic and maintain the
same rate as flow f1 as shown in Figure 7b and Figure 7c.

5.1.3 Share Resource on Common Bottleneck

Another great property of Söze is that we can reallocate the
resource among flows within the same application, while
the application generally keeps the same total bandwidth
utilization and minimizes the effect on other applications’
behavior. This property can be helpful, especially when some
jobs share the same bottleneck in the network, such as the
firewalls or load balancers. When applications share the same
bottleneck, the resource allocation for each application can
be perfectly isolated if the sum of weights remains the same.

In this experiment, we have two jobs in total. As shown
in Figure 8, one job has two parallel flows f1 and f2, while
the other job has two other parallel flows f3 and f4. Both jobs
need data from every parallel flow for further computation, so
we want them to finish at the same time to minimize waiting
time. Because all the flows have different sizes, we change the
weight of every flow at time 100 seconds. However, to keep
the same job-level resource allocation, we choose the weight
carefully so that the sum of all the flows’ weights within
one application remains the same. As you can see in Figure
Figure 8d, no matter before or after the weight changes, the
bandwidth that each job occupied in total is always around
5 Gbps, while each individual flow’s bandwidth has been
updated depending on the size. In summary, by restricting the
sum of all flows’ weights insides one job to be a constant,
each job reduce the interference with other jobs’ resource;



(a) Experiment setup. (b) Fair allocation. (c) Optimal allocation. (d) Altruistic allocation.

Figure 9: a) The flows f1 (28 GB) and f2 (7 GB) belong to job 1, where f1 f2 start simultaneously. The flow f3 (7 GB) and f4 (14
GB) belongs to job 2, where f4 can only started when f3 finishes; b) With the fair allocation, f2 and f3 fairly share the bandwidth
and job 2 finishes at time 60 s; c) Under the optimal allocation, f2 will initially give all bandwidth to f3. Thus, job 2 finishes at
time 45 s; d) With the altruistic allocation, f2 shares the bandwidth with the guarantee that it can still finish on time with its
bandwidth. The job 2 finishes at around time 50 s.

Only when different jobs shares the same bottleneck, there is
no interference among different jobs.

5.1.4 Altruistic Scheduling among Multiple Jobs

Although the weighted allocation could help us prioritize the
critical execution path, sometimes the critical path cannot be
accelerated due to resource limitations and job characteristics.
In such cases, other non-critical execution paths could be
altruistic by giving up some resources to other jobs, as long
as the non-critical execution paths can finish at the same time
as the critical path, the job completion time is not harmed.
However, the bandwidth altruistically given to other jobs may
benefit their completion time.

In the example of Figure 9, we have two jobs: one job
has two parallel flows, f1 and f2, while the other job has two
sequential flows f3 and f4. In the fair allocation case, flows f2
and f3 fairly share the inbound bandwidth at host 4, and both
finish at around 30 seconds. Then, flow f4 starts and finishes
at 60 seconds. However, because flow f1 is much larger than
flow f2, we could let flow f2 give up some bandwidth without
hurting the job completion time. In the optimal allocation
scenario, flow f2 can give all the bandwidth to flow f3 and
achieve the minimum job completion time. However, this is
not safe because one job does not know the size of the other
job’s flow. Thus, in the altruistic allocation case, we let f2
get only 25% of the bandwidth, because this is the minimum
bandwidth to guarantee completion at the same time with flow
f1. With this altruistic behavior, flow f3 finished much earlier
at 20 seconds, so that its job also finished at time 60 seconds,
which is 10 seconds earlier than the fair allocation.

5.1.5 Shortest-flow Prioritization

In this experiment, we create an in-cast scenario where three
hosts send RPC write requests to one host. Note that this ex-
periment is not under the assumption that all flows come from
the same job and need to follow the weight distribution policy.
The size of the RPC write varies based on the workload, from

(a) Experiment setup. (b) Flow completion time.

Figure 10: Shortest flow prioritization.

around 700 MB to 7000 MB. Because the three senders may
send RPCs of different sizes at the same time, prioritizing the
RPCs with the smallest size could approximate shortest job
first scheduling and reduce the overall average flow comple-
tion time. Thus, based on the flow size, we calculate a specific
weight for flow with the equation weight = max_ f low_size

f low_size .
As we can see in Figure 10, when we update the weight

according to the flow size, smaller flows finish faster than
the fair allocation case. As a trade-off, only a small portion
of large flows suffer from longer completion time than fair
allocation, while more than 80% of the flows benefit from the
approximately shortest-flow first allocation. Moreover, unlike
a strict shortest-flow first policy, like the preemption-based
schedulers, Söze never starves the large flows.

5.1.6 TPC-H Benchmark Acceleration

Furthermore, we also test the 22 jobs from the TPC-H bench-
marks [1] in our NS-3 simulator, in which each job is an
execution DAG with tasks. Each task is randomly placed on
a host within a fat-tree topology. For every flow in the DAG,
we calculate the longest distance from this flow to the end of
the DAG and use this distance to determine the flow’s weight.
This simple policy is designed based on the insight that the
longer execution path needs more resources. In Figure 11,
with Söze providing the weighted allocation, the average job
completion time is reduced by 0.79×, and the maximum re-
duction is 0.59×. Only jobs that have only one execution path



Figure 11: TPC-H jobs acceleration with weighted allocation.

(a) Timely. (b) Söze.

Figure 12: Step-in & step-out experiment on eRPC testbed.
Söze achieves higher utilization and faster convergence to the
optimal state than Timely.

do not receive benefits from Söze.

5.2 Efficient Congestion Control
5.2.1 Step-in & Step-out Experiment in Testbed

To show that Söze can serve as an efficient congestion control
algorithm, we conduct a step-in and step-out experiment on
the eRPC testbed with three hosts sending traffic to one host.
Every 50 seconds, a new flow was added to the incast host
from a different sender until time 100 seconds, then every 50
seconds, one flow will terminate and give bandwidth back.

As shown in Figure 12, Söze outperforms Timely, the de-
fault congestion control algorithm in eRPC. When there is
only one flow, Söze achieves higher utilization than Timely;
and when a new flow arrives or an existing flow completes,
Söze converges to the new optimal allocation faster than
Timely because of the proposed adaptive MIMD algorithm.

In Figure 13, we also show the round-trip time (RTT) for
both Timely and Söze. The RTT of Söze increases with more
number of flows competing on the link, because our target
function is monotonically decreasing as the fair-share rate
of the link increases. Nevertheless, Söze still achieves lower
RTT than Timely, because we use a range of queueing delay
to indicate different levels of congestion, and the maximum
queueing delay in Equation 6 bounds the RTT of Söze.

5.2.2 Step-in & Step-out Experiment in NS-3

In the NS-3 simulator, we also conducted a step-in and step-
out experiment with hosts under different ToRs sending traffic

(a) Timely. (b) Söze.

Figure 13: Söze achieves lower RTT than Timely by using
queueing level as the signal to indicate congestion.

(a) HPCC. (b) Söze.

Figure 14: Step-in & step-out experiment in NS-3 simula-
tor. Compared with HPCC, Söze achieves a more stable and
accurate rate allocation.

(a) 40% load. (b) 80% load.

Figure 15: FCT slowdown under different network loads.

to the same destination. We compared Söze with one recent
data center congestion control algorithm using in-network
telemetry — HPCC. In this set of experiment, 4 flows are
added every 10 milliseconds, and each flow completes every
10 milliseconds in sequence.

Compared to HPCC, the bandwidth allocation in Söze is
very accurate and stable in Figure 14. Because Söze uses the
queueing delay as the signal to indicate the level of congestion,
more specifically, the fair-share rate of the link. While for
HPCC, the in-network signal is only used to indicate whether
the link is congested or not, so that the bandwidth allocation
is not accurate nor stable for HPCC due to the binary status
provided by its in-network signal.

5.2.3 FCT Slowdown

In order to evaluate the performance of Söze under high net-
work load with a large amount of flows, we run the Google
RPC workload [53] with randomly selected sender and re-



ceiver. And we compare with two datacenter congestion con-
trol solutions — HPCC and DCQCN.

In Figure 15, under both 40% and 80% load, Söze achieves
lower FCT slowdown than HPCC and DCQCN, especially for
the short flows. Because Söze could grab bandwidth rapidly
with fast convergence. As shown in Figure 16, Söze provides
more benefits for flows with less than 1000 packets. While for
flows with larger data size (> 100k packets), Söze also pro-
vides comparable performance with DCQCN and outperforms
HPCC, leading to shorter tail FCT slowdown in Figure 15.

5.3 Micro-benchmark
In this subsection, we compare Söze with alternative solutions
with a set of micro-benchmark experiments on the testbed and
the NS-3 simulator to demonstrate Söze’s weighted max-min
fairness, high agility, fine granularity, and scalability.

5.3.1 Weighted Max-min Fairness

In the experiment for weighted max-min fairness, we create a
scenario where flow 1 only travels switch 1; flow 2, 3, and 4
travel switch 1 and switch 2; flow 4 and 5 only travel switch
2. The link bandwidth is 100 Gbps and the default weight for
every flow is 1, so that flow 1 get 40 Gbps at the beginning.
Every 10 milliseconds, the weight of flow 1 will be increased
by 1. When the weight is 2, flow 1 still gets 40 Gbps because
the bottleneck hop for flow 2, 3, and 4 is still switch 2. Only
when the weight increases to be higher than 3, the bottleneck
hop becomes switch 1 and flow 1 will take more bandwidth
from other flows on switch 1.

As we described in §3.2, the weighted max-min fairness
for every flow is determined by its bottleneck hop. In Fig-
ure 17, we show that the bottleneck hop for flow 2, 3, and 4
changes with the increase of flow 1’s weight. With this micro-
benchmark experiment, we demonstrate that Söze can recog-
nize the bottleneck hop for every flow and achieve weighted
max-min fairness rapidly after the weight is changed for any
flow in the network. Moreover, the bottleneck hop changes at
time 20 ms, and Söze handles the changing bottleneck rapidly
within 10 RTTs. For comparison, we test how weighted round-
robin (WRR) scheduling in switches combined with AIMD
rate control would perform in this scenario. WRR enforces
weighted sharing of bandwidth at the packet scheduling level
but senders must still discover the achievable bandwidth at
the end-to-end level. The AIMD control uses queuing delay
as the explicit feedback signal: when the queuing delay is
below 20 µs (this value is chosen to ensure good link utiliza-
tion in the experiment), the CWND is increased by 1; when
the queuing delay exceeds 20 µs, the CWND is reduced by
20% (this value is chosen to limit oscillation). In the results
in Figure 17c, we can see that the rate for each flow is main-
tained correctly around the weighted max-min fair allocation
by WRR scheduling. However, the link utilization is lower
than with Söze because the oscillation due to AIMD is larger.

(a) 40% load. (b) 80% load.

Figure 16: FCT slowdown for different flow size under differ-
ent network loads.

5.3.2 Granularity Micro-benchmark

To show the granularity of the weighted allocation, we make
use of a coflow scenario, where each coflow is consist of 10
flows, and the flow size is randomly chosen from a range of
[1 GB, 3 GB]. In Söze, according to the size of each flow, the
flow will be assigned with a certain weight to complete at the
same time with other flows: in Söze’s scenario, the weight
is equal to the flow size. For the multi-connection solution,
we will choose the closest integer number with the flow size.
For instance, there will be 2 connections for a flow with 2.4
GB data size and there will be 3 connections for a flow with
2.6 GB data size. For the switch-based weighted round-robin
solutions, we test on a scenario where each switch has 4
physical queues. We try to pack the 10 different flows into
4 physical queues and set a certain weight for each physical
queue. The flows with similar data size will be packed into
the same queue, and they will fairly share the bandwidth from
that physical queue. The sum of the flow data size within a
queue will be used to calculate the weight of each queue.

In Figure 18a, Söze allows all the flows within a coflow
to finish at nearly the same time, so that it has the minimum
FCT difference among all the alternative solutions. In con-
trast, the multi-connection solution ("Multi-Conn") only pro-
vides integer number of concurrent connections, which makes
the weight enforcement rigid and cannot support non-integer
weight; the switch-based weighted round-robin ("Physical
Queue") relies on limited number of physical queues, and
weight enforcement granularity will degrade when the num-
ber of flows exceeds the number of queues.

In addition, we also compare different schemes by chang-
ing weights or the number of connections. We create a simple
in-cast scenario, where two flows are sent to the same desti-
nation host. In Figure 18b, we increase the weight for flow
0 every 2 milliseconds by 5‰, 10‰, 20‰, etc. The figure
shows that the rate allocation can be accurately stabilized
around any level, even when the weight difference is rela-
tively small. In contrast, we also let both Söze and HPCC
have multiple connections to change the rate allocation. In
Figure 18c, Söze adds one connection for flow 0 every 5 mil-
liseconds. The rate allocation changes accurately accordingly



(a) Experiment scenario. (b) Söze with increasing weight. (c) WRR with AIMD.
Figure 17: a) Flow 1 and flow 2, 3, 4 compete on switch 1; flow 5 and 6 compete with flows on switch 2. During time 0 ms to time
50 ms, we increase the weight of flow 1 from 1 to 5 every 10 ms. b) Söze achieves accurate weighted sharing. When the weight
of flow 1 is smaller than 2, flow 1 remains at 40 Gbps since switch 2 is the most congested hop; but when the weight is higher
than 2, flow 1’s rate increases because the congested hop has become switch 1. c) For comparison, we repeat the experiment
using weighted round-robin (WRR) scheduling in switches to achieve flow 1’s increasing weight; AIMD rate control is used to
adapt to the weight changes.

(a) Granularity comparison. (b) Söze with weight updates. (c) Söze multi-connection. (d) HPCC multi-connection.

Figure 18: Granularity and agility comparison.

to the number of connections, but the allocation granularity
is limited to weights with integer numbers. For HPCC with
multi-connection in Figure 18d, the flow rates are also main-
tained around the weighted allocation, but the rate enforce-
ment is less accurate and also suffers from coarse-granularity
due to integer weights.

5.3.3 Agility Micro-benchmark

With the same experiment in 18b that changes the weights
for Söze, we also demonstrate the agility achieved by Söze.
As shown in Figure 18b, on average, it only takes less than
10 RTTs for Söze to converge to the new rate under the new
weight. We can observe that there is a rate surge right after
each weight change and before convergence. This is because
we are increasing the weight of flow 0, thus the new converged
queueing delay is higher than before, so the rate needs to
exceed the line rate briefly to stack the switch queue.

5.3.4 Scalability Micro-benchmark

Scalability is the key to supporting large-scale systems with
consistent performance despite increasing scale. Söze is a
fully distributed system and can inherently scale to datacen-
ters of any size; in contrast, the water-filling algorithm is a
centralized solver, which needs to gather all the information
to one master node and use its resources for computation. In
the following experiments, we test the convergence time of

(a) Increasing topology size. (b) Increasing flow count.

Figure 19: The solving time for the water-filling algorithm
increases drastically with either increasing topology size or
increasing number of flows; while Söze provides consistent
convergence speed toward the global weighted allocation state
despite of the increasing topology size or flow count.

Söze and the solving time of the water filling to demonstrate
the capability to scale for those two solutions.

Firstly, we maintain the same number of flows and change
the fat-tree network topology sizes by parameter K. We chose
the number of flows to be 10k so there are roughly 10 flows
per server when K = 16. In Figure 19a, when the topology
size increases from K = 4 (16 hosts) to K = 16 (1024 hosts),
the solving time of the water filling algorithm increases drasti-
cally. In contrast, for Söze, once applications have determined
the weights, the convergence time towards the global weighted
bandwidth allocation is always around the same magnitude.



The average convergence time for Söze is 0.3 milliseconds,
which is around 10 RTTs.

Moreover, we also tested the convergence time for Söze
and the water filling algorithm with increasing number of
flows under the same topology. As shown in Figure 19b,
the network topology is always a fat-tree with 1024 servers
(K = 16), and the number of flows in the network increases
from 10 flows to 1 million flows. As more and more flows are
added to the network, the solving time for the water filling
algorithms increases from 1.81 milliseconds with 10 flows to
31.1 seconds with 1 million flows. While Söze still provides
consistent convergence towards the global weighted allocation
within 10 RTTs. Thus, the water-filling algorithm has inherent
drawbacks to support large-scale data center; while Söze
benefits from the decentralized design and can be scale up
with nearly no performance degradation.

6 Related Work
One line of work focuses on using weighted fair queueing
(WFQ) on the switches to achieve weighted allocation. Num-
Fabric [42] assumes switches support WFQ in hardware,
then provides algorithms for setting the weight parameters
in switches to optimize for a utility objective. NumFabric is
complementary to Söze, because Söze replaces switch WFQ;
weight parameters provided by NumFabric can be used to
implement the desired utility objective on Söze even more
easily, because there is no talking to switches’ control planes.

Besides using weighted fair-queueing algorithms on
switches [16, 21, 23, 46, 52] to allocate bandwidth, a re-
cent trend is to use programmable switches to approximate
weighted fair-queueing [22,50,54,59,60]. Such switch-based
solutions are hard to scale because of the resource limitations
on the switches. To enforce the per-flow weighted alloca-
tion accurately among many flows, the switch data plane
needs to keep a large amount of information, which may
exceed the memory capacity. Moreover, the delay and the
complexity of the control plane for such a scheme are both
high, which leads to a lack of agility. To add a new flow or
to change the weight, the flow sender needs to inform all the
switches along the flow’s path individually. Besides, those
works heavily rely on programmable switches, which are not
widely used in production, and those switches are usually less
cost-effective than commodity switches with fixed teleme-
try functions. PERC [30] proposes an alternative approach
that departs from the existing DCN service model; it requires
switches to run a distributed algorithm to continuously com-
pute the max-min fair shares for all flows and communicate
them to end hosts; the algorithm requires control packets that
must be processed by switches, requiring multiplication and
division operations. In contrast, Söze only requires INT from
the switches, and end hosts can do the rest.

As for solutions that do not rely on switches, a bandwidth
allocator [27,32,34,51] is also capable of achieving weighted

max-min fairness for all flows. By aggregating the sources,
destinations, and demands of all flows, the allocator can calcu-
late a rate allocation plan for each flow. However, this solution
requires aggregating information and calculating the alloca-
tion plan at the controller, which may lead to a long solving
time when the scale of the network increases. Moreover, such
solutions are not agile. Each time a flow needs to change
weight or a new flow arrives, the whole rate allocation algo-
rithm may need to be executed, leading to high overhead and
long control plane delay.

There are also proposals that aim to manipulate the conges-
tion window to allow a flow to take up more bandwidth when
needed. For example, D2TCP [56] proposes to adjust the con-
gestion window size more or less aggressively based on how
close the time is to the deadline. MulTCP [20] heuristically
lets a flow act like N flows in adjusting its congestion window
more aggressively. Both solutions build on top of the TCP
algorithm, but suffer from the inherited drawbacks, like slow
convergence and throughput jitter. Weighted allocation is not
the goal of D2TCP, while in MulTCP the effect of increasing
the N parameter is not linear and may change for different
situations. In contrast, Söze achieves fast convergence, low
throughput jitter, and accurate weighted fair allocation.

Besides weighted allocation, priority-based allocation solu-
tions [13, 40] are also used to provide service differentiation
between flows, but such solutions have some intrinsic disad-
vantages over weighted bandwidth allocation, such as head-of-
line blocking if preemption is not allowed, and starvation risk.
Moreover, priority-based differentiation schemes are a larger
departure from the existing DCN service model that’s based
on fair allocation. Söze represents a potentially more com-
patible evolutionary direction with flexible and controllable
allocation for general-purpose DCN.

7 Conclusion
In this paper, we propose Söze, a simple and efficient weighted
bandwidth allocation system for data center networks. Söze
designs the maxQD INT signal to not only indicate network
status but also provide a control knob to coordinate multiple
flow senders. Furthermore, Söze co-designs the decentral-
ized rate update algorithm with the maxQD signal, which
allows each flow to independently move toward the weighted
max-min fair allocation in arbitrary networks. We prototype
Söze across various platforms and demonstrate that Söze can
achieve weighted bandwidth allocation with fine granularity,
high agility, and high scalability.
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A Notations

We list all the symbols used in the main body and the appendix
as follow:

Symbol Explanation
fi The flow with index i

wi The weight of flow fi
ri The rate of flow fi

ri(t) The rate of flow fi at time t
ri(∞) The final rate of flow fi after convergence

si The flow fi’s rate divided by weight, equals to ri
wi

si(t) The flow’s rate divided by weight at time t
D(t) The queueing delay signal at time t
D(∞) Final queueing delay signal after convergence

B Bandwidth
W Total weight on the link: w0 +w1 + ...+wn
R Aggregated link arrival rate

R(t) Aggregated link arrival rate at time t

T (s)
Target delay function,
take si as input and give target queueing as output

U(s,D)
Rate update function,
rate and queueing as input and output update ratio

α Upperbound rate (the highest link bandwidth)
β Expected lowest rate
k Base queueing delay in target function
q Increment queueing delay in target function
m Convergence control parameter in PID control

w f s weighted fair-share rate
∆t the rate update period

Table 1: Symbol table.

B Proof for Goal Transformation

The goal of weighted bandwidth allocation is to achieve for
any flow fi:

ri =
wi

w0 +w1 + ...+wn
·B (8)

In the paper, we gave another goal:r0 + r1 + ...+ rn = B
r0

w0
=

r1

w1
= ...=

rn

wn

(9)

Here we can prove that those two goals are equivalent by
proving one goal can derive the other one.

Original goal to proposed goal:
If we assume for any flow fi:

ri =
wi

w0 +w1 + ...+wn
·B (10)

Then we have:

r0 + r1 + ...+ rn =
w0 +w1 + ...+wn

w0 +w1 + ...+wn
·B

= B
(11)

For any flow fi, we also have:

ri

wi
=

wi

w0 +w1 + ...+wn
·B · 1

wi

=
B

w0 +w1 + ...+wn

(12)

For flows with specific weights, B
w0+w1+...+wn

is a constant.
In conclusion, original goal can derive the proposed goal.

Proposed goal to original goal:
If we assume: r0 + r1 + ...+ rn = B

r0

w0
=

r1

w1
= ...=

rn

wn

(13)

For any flow fi, we can have:

ri =
r0

w0
·wi =

wi

w0
· r0 (14)

So that we have:

r0 + r1 + ...+ rn = B
w0

w0
· r0 +

w1

w0
· r0 + ...+

wn

w0
· r0 = B

w0 +w1 + ...+wn

w0
· r0 = B

r0 = B · w0

w0 +w1 + ...+wn
(15)

For any flow fi, we can have:

ri =
wi

w0 +w1 + ...+wn
·B (16)

In conclusion, the proposed goal can also derive the original
goal. Thus, those two goals are equivalent.

C Proof of Convergence to Weighted Fairness
on a Single Switch

In this section, we will prove that the weighted fairness will
be achieved with Söze.

Lemma : Convergence to Weighted Fairness

Söze converges to the weighted fairness on a link if and
only if 0 < m < 2 in the update function.



To formally prove the above lemma, consider the scenario
as follows. Assume a link with two flows A and B with current
rates ra and rb and weights wa and wb respectively where
ra
wa

< rb
wb

. The weighted fairness can be verified with the angle
between the actual bandwidth share and the weighted fair-
share. We define the update function U(s,D) as the update
ratio between the current rate and the new rate, i.e., r′ =
r ·U(s,D). We also denote that sa =

ra
wa

and sb =
rb
wb

To ensure that fairness improves, the updated rates of flows
A and B (i.e., s′a and s′b respectively) should reduce the angle
with the weighted fairness line. Therefore, the lower bound
of the new allocation’s angle with weighted fair is defined by
the current ratio of rates (i.e., having the slope sa

sb
), and the

upper bound is symmetric across the weighted fair-share line
(i.e., having the slope sb

sa
). Assuming sa < sb, the requirement

to converge to fair share can be written as follow:

sa

sb
<

sb ·U(sb,D)

sa ·U(sa,D)
<

sb

sa
,∀sa < sb,∀D > 0 (17)

Without loss of generality, we assume sa < sb.
For the RHS:

U(sb,D)

U(sa,D)
=

(
T (D)

sb

)m

(
T (D)

sa

)m

=

(
sa

sb

)m

< 1

(18)

For the LHS:

U(sb,D)

U(sa,D)
=

(
T (D)

sb

)m

(
T (D)

sa

)m

=
( sa

b

)m

(19)

So as long as m < 2, we can have

U(sb,D)

U(sa,D)
=

(
sa

sb

)m

>

(
sa

sb

)2
(20)

Thus, as long as 0 < m < 2, Equation 7 satisfies Equa-
tion 17.

D Proof of Convergence to Target Queueing
Delay on a Single Switch

Since convergence to weighted fairness has been proven to
be achieved no matter whether the target queueing delay is
achieved, we could assume that fairness has been achieved
and that all flows have the same rate.

Lemma : Convergence to Target Queueing

Söze converges to the target queueing delay level, if
and only if p > ∆t

2 · [ln(α)− ln(β)].

Denote the link bandwidth as B and the total weight on the
link as W . For any flow fi on the link, its weighted fair share
rate of flows as si(∞) = ri(∞)

wi
. Since we assume all the flows

converge to weighted fair-share, so the total arrival rate for
the link can be calculated as:

R(i) = s(i) ·W (21)

From the target function 6, we have the following:

s(i+1) = s(i)∗
[

T−1 [D(i)]
s(i)

]m

(22)

D(i+1) = D(i)+
[R(i)−B] ·∆t

B

= D(i)+
[s(i) ·W −B] ·∆t

B

(23)

In which, the ∆t is the rate update period. For per-packet
update, ∆t = RT T

CWND .
To simplify the target function and the inverse target func-

tion, we have the following:

T (s) = p · ln(α)− ln(s)
ln(α)− ln(β)

= p ·
ln(α

s )

ln(α

β
)

=
ln(α

s )

− ln
(
( β

α
)

1
p
)

(24)

T−1(D) = exp
[

ln(α)− D
p
· (ln(α)− ln(β))

]
= exp

[
ln(α)− ln(α)− ln(β)

p
·D
]

= α ·
exp[ ln(β)

p ·D]

exp[ ln(α)
p ·D]

= α · β
D
p

α
D
p

= α ·
(

β

α

)D
p

(25)

Denote ( β

α
)

1
p = A, we have:

T (s) = log
s
α

A
(26)



T−1(D) = α ·AD (27)

With the simplified function, we can calculate the updated
D(i+ 1) according to D(i). Here we assume m = 1 for a
simpler representation.

s(i) = α ·AD(i) (28)

D(i+1) = D(i)+
∆t
B
· [W · s(i)−B] (29)

D.1 Convergence with Oscillation

Figure 20: Convergence with oscillation

If the queuing delay is allowed to converge to the target
delay with oscillation as Figure 20, then we require:

−|D(i)−D(∞)|< D(i+1)−D(∞)< |D(i)−D(∞)| (30)

Without loss of generality, we assume D(i) > D(∞),
namely, s(i)< s(∞):

2 ·D(∞)−D(i)< D(i+1)< D(i) (31)

For RHS:

D(i+1)< D(i)

D(i)+
∆t
B
· [W · s(i)−B]< D(i)

∆t
B
· [W · s(i)−B]< 0

W · s(i)−B < 0

s(i)<
B
W

s(i)< s(∞)

(32)

Thus, we can prove that the RHS is satisfied.
For LHS:

D(i+1)> 2 ·D(∞)−D(i)

D(i)+
∆t
B
· [W · s(i)−B]> 2 ·D(∞)−D(i)

∆t
B
· [W · s(i)−B]> 2 · [D(∞)−D(i)]

W · s(i)−B >
2 ·B
∆t
· [D(∞)−D(i)]

(33)

We know in the converged state, we have B = W · s(∞).
Thus, we can have:

W · s(i)−B >
2 ·B
∆t
· [D(∞)−D(i)]

W · s(i)−W · s(∞)>
2 ·B
∆t
· [D(∞)−D(i)]

W · [s(i)− s(∞)]>
2 ·B
∆t
· [D(∞)−D(i)]

W ·α · [AD(i)−AD(∞)]>
2 ·B
∆t
· [D(∞)−D(i)]

(34)

Thus, we have:

AD(i)−AD(∞)

D(i)−D(∞)
>− 2 ·B

α ·W ·∆t

AD(i)−AD(∞)

D(i)−D(∞)
>−2 ·AD(∞)

∆t
AD(i)

AD(∞) −1

D(i)−D(∞)
>− 2

∆t

AD(i)−D(∞)−1
D(i)−D(∞)

>− 2
∆t

(35)

We can observe that AD(i)−D(∞)−1
D(i)−D(∞) is a function with variable

D(i)−D(∞) > 0. Denote function K(x) = Ax−1
x . Easily, we

can know that the value of K(x) is minimum when x is close
to 0.

Because Ax−1= 0 when x= 0, so the value of K(ε) should
be just the derivative of Ax−1:

K(ε) =
Aε−1

ε

= (Aε−1)′

= ln(A) ·Aε

= ln(A)

(36)



Thus, we only need to satisfy that:

ln(A)>− 2
∆t

1
p
· ln
(

β

α

)
>− 2

∆t
p

∆t
>

1
2
· ln
(

α

β

) (37)

If we assume α = 100Gbps and β = 0.1Gbps, which is a
wide range of flow rates:

p
∆t

> 0.5 · ln(1000) = 3.45 (38)

Thus, as long as p, which is the range of the target delay
values (3 to 40 us in our previous equation), is large enough
or the update interval ∆t is small enough, the LHS can be
satisfied.

D.2 Convergence without Oscillation

Figure 21: Convergence with oscillation

As Figure 21 shows, convergence without oscillation is a
stronger requirement than convergence with oscillation.

Instead of satisfying the inequality Equation 31, we need
to satisfy the following inequality (without loss of generality,
we assume D(i)> D(∞)):

D(∞)< D(i+1)< D(i) (39)

For RHS, the proof is similar:

D(i+1)< D(i)

D(i)+
∆t
B
· [W · s(i)−B]< D(i)

∆t
B
· [W · s(i)−B]< 0

W · s(i)−B < 0

s(i)<
B
W

s(i)< s(∞)

(40)

We proved that the RHS is satisfied.
For LHS:

D(i+1)> D(∞)

D(i)+
∆t
B
· [W · s(i)−B]> D(∞)

∆t
B
· [W · s(i)−B]> D(∞)−D(i)

W · s(i)−B >
B
∆t
· [D(∞)−D(i)]

(41)

We know in the converged state, we have B = W · s(∞).
Thus, we can have:

W · s(i)−B >
B
∆t
· [D(∞)−D(i)]

W · s(i)−W · s(∞)>
B
∆t
· [D(∞)−D(i)]

W · [s(i)− s(∞)]>
B
∆t
· [D(∞)−D(i)]

W ·α · [AD(i)−AD(∞)]>
B
∆t
· [D(∞)−D(i)]

(42)

Thus, we have:

AD(i)−AD(∞)

D(i)−D(∞)
>− B

α ·W ·∆t

AD(i)−AD(∞)

D(i)−D(∞)
>−AD(∞)

∆t
AD(i)

AD(∞) −1

D(i)−D(∞)
>− 1

∆t

AD(i)−D(∞)−1
D(i)−D(∞)

>− 1
∆t

(43)

We can observe that AD(i)−D(∞)−1
D(i)−D(∞) is a function with variable

D(i)−D(∞) > 0. Denote function K(x) = Ax−1
x . Easily, we

can know that the value of K(x) is minimum when x is close
to 0.



Because Ax−1= 0 when x= 0, so the value of K(ε) should
be just the derivative of Ax−1:

K(ε) =
Aε−1

ε

= (Aε−1)′

= ln(A) ·Aε

= ln(A)

(44)

Thus, we only need to satisfy that:

ln(A)>− 1
∆t

1
p
· ln
(

β

α

)
>− 1

∆t
p

∆t
> ln

(
α

β

) (45)

Thus, as long as p, which is the range of the target delay
values (3 to 40 us in our previous equation), is large enough
or the update interval ∆t is small enough, the LHS can be
satisfied.

Compared to convergence with oscillation, convergence
without oscillation has a more strict requirement on p

∆t , which
is twice higher than convergence with oscillation.

E Proof of Convergence to Weighted Max-
min Fairness in Arbitrary Network

Firstly, we give the definition of max-min fairness:

Definition : Weighted Max-min Fair [14, 38]

For all flows { f 1, ..., f n} in the network, denote
their weight to be {w f 1, ...,w f n}. A rate allocation
{r f 1, ...,r f n} is weighted max-min fair when for each
flow f , any increase in r f would cause a decrease in the
transmission rate for some flow f ′ satisfying

r f ′
w f ′
≤ r f

w f
.

In this section, we will prove that the maxQD signal must
come from the bottleneck hop, and thus we achieve weighted
max-min fair allocation.

To prove the above lemma, we need to prove that the allo-
cation for any arbitrary network is unique and the bottleneck
hop can be identified by the maxQD signal. Thus, the proof
is divided into three parts: 1) Prove that the bandwidth allo-
cation is unique for any arbitrary network; 2) Prove that in
weighted max-min fairness, a flow must have the largest rate
on its bottleneck hop; 3) Prove that only the signal from the
bottleneck hop will be collected in Söze, which is required to
achieve weighted max-min fairness.

Once we have proved that the maxQD signal must only
come from the bottleneck hop, the proofs for the single-switch
scenario in Appendix C and Appendix D can be directly used

to show the properties can be achieved on the bottleneck
hop in an arbitrary network, namely, the weighted max-min
fairness can be achieved.

E.1 Weighted Max-min Fair is Unique
Assume a feasible weighted max-min fair allocation of rates~x
exists, so that every flow has a specific bottleneck link, which
is the link with the highest queueing signal.

Lemma : Unique Bandwidth Allocation

For the weighted max-min fair bandwidth allocation,
each link in the network has a specific weighted fair-
share rate.

Assume there exists another allocation~y, which changes
the bottleneck hop for a flow i. Its rate was previously xi, but
now is yi in the new allocation. Denote the bottleneck hop
for this flow in ~x as γ and the new bottleneck hop in~y as γ′.
Denote the weighted fair-share rate for hop γ in allocation~x
as Rx(γ).

Then in allocation~x, we can easily conclude that

xi

wi
= Rx(γ)< Rx(γ

′) (46)

In the new allocation, WLOG, we assume that the new flow
rate yi is smaller than xi, namely yi < xi. Because the flow rate
i’ decreases, the rate of the other flows must increase. Thus,
we can easily have the following.

Rx(γ
′)<

yi

wi
= Ry(γ

′)<
xi

wi
(47)

With the contradiction that xi
wi

<Rx(γ
′) and xi

wi
>Rx(γ

′) can-
not be satisfied at the same time, we proved that the bottleneck
hop for each flow is unique and the weighted max-min fair
allocation is unique. During the whole proof, the link band-
width is not relevant, so the conclusion can be generalized to
links with heterogeneous bandwidth.

E.2 Bottleneck Hop Properties
From the definition of the weighted max-min fair, we can
derive a lemma that reveals that each flow’s rate-per-weight
is the largest among flows sharing its bottleneck hop.

Lemma : Bottleneck Hop Properties

When achieving weighted max-min fair, each flow will
have the largest rate-per-weight among all flows on its
bottleneck hop and not on any other saturated hop.

Formally, for the “weighted max-min fair” allocation~x, for
any flow f , denote the flows shared the same bottleneck with
f as b1,b2, ...,bk. For any flow bi,

x f
w f
≥ xbi

wbi
. Denote the flow’s



share on the saturated non-bottleneck hop of f as c1,c2, ...,ck,
then there must exist some c j such that

xc j
wc j

>
x f
w f

.

Assume that there exists a flow f that has reached its
weighted fair-share r

w , and there is another flow f ′ on its
bottleneck hop with an even larger rate-per-weight r′

w . But
this state is not max-min fair because flow f could get some
bandwidth from flow f ′ and let them have the same rate-per-
weight. By contradiction, the flow f has the largest rate on its
bottleneck hop.

On the other hand, assume there exists a flow f , which is
the fastest flow, with weighted fair share r

w , on one of the non-
bottleneck hops. However, given that this link is congested,
its fair-share flows with a weight per weight rate r′

w could
obtain the bandwidth from the flow s and increase their fair-
share rate to at least r+W ·r′

w·(W+1) , where W is the sum of the flow
weights. By contradiction, the flow f cannot be the largest
flow on its non-bottleneck hop.

E.3 maxQD must Come from Bottleneck
With the above lemma, we can prove that the maximum queue-
ing signal must come from the bottleneck hop, and weighted
fairness and target queueing are achieved on the bottleneck
hop.

Lemma : Bottleneck Signal

In Söze, the maxQD signal must come from the bottle-
neck hop of each flow.

In the converged state, only on the bottleneck hop, a flow
has the largest sending rate. So, on all other hops, this flow
is not the fastest flow. Given that the queueing signal de-
creases when the fair-share rate increases, all other hops have
a smaller queueing signal than the bottleneck hop. Thus, the
maximum queueing signal must come from the bottleneck
hop.

With the queueing signal from the bottleneck hop, only the
flows that are bottlenecked by that hop will share the available
bandwidth fairly. Thus, for each flow, Söze identifies the bot-
tleneck hop from all other hops and achieves fair allocations
on the bottleneck.

E.4 Achieve Weighted Max-min Fairness

Theorem : Weighted Max-min Fairness

For every flow in an arbitrary networks, Söze converges
to a weighted max-min fair allocation, if and only if 0 <
m< 2 in the update function and p> ∆t

2 · [ln(α)− ln(β)]
in the target function.

Since the queueing signal always comes from the bottle-
neck hop and Söze reacts only to the bottleneck signal, the

weighted fairness will be achieved among all the flows shar-
ing the same bottleneck. And if all the flows converge to
the weighted fairness on their bottleneck, according to the
definition, the weighted max-min fair has been achieved.
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