
Poseidon: Efficient, Robust, and Practical Datacenter CC via Deployable INT

Weitao Wang* †, Masoud Moshref*, Yuliang Li*, Gautam Kumar*,
T. S. Eugene Ng†, Neal Cardwell*, and Nandita Dukkipati*

*Google LLC, †Rice University

Abstract
The difficulty in gaining visibility into the fine-timescale

hop-level congestion state of networks has been a key chal-
lenge faced by congestion control (CC) protocols for decades.
However, the emergence of commodity switches supporting
in-network telemetry (INT) enables more advanced CC. In
this paper, we present Poseidon, a novel CC protocol that ex-
ploits INT to address blind spots of CC algorithms and realize
several fundamentally advantageous properties. First, Posei-
don is efficient: it achieves low queuing delay, high through-
put, and fast convergence. Furthermore, Poseidon decouples
bandwidth fairness from the traditional AIMD control law,
using a novel adaptive update scheme that converges quickly
and smooths out oscillations. Second, Poseidon is robust: it
realizes CC for the actual bottleneck hop, and achieves max-
min fairness across traffic patterns, including multi-hop and
reverse-path congestion. Third, Poseidon is practical: it is
amenable to incremental brownfield deployment in networks
that mix INT and non-INT switches. We show, via testbed and
simulation experiments, that Poseidon provides significant
improvements over the state-of-the-art Swift CC algorithm
across key metrics – RTT, throughput, fairness, and conver-
gence – resulting in end-to-end application performance gains.
Evaluated across several scenarios, Poseidon lowers fabric
RTT by up to 50%, reduces time to converge up to 12×, and
decreases throughput variation across flows by up to 70%.
Collectively, these improvements reduce message transfer
time by more than 61% on average and 14.5× at 99.9p.

1 Introduction
Effective datacenter congestion control (CC) needs to provide
high throughput, low latency, fairness, and fast convergence
across varied workloads. CC is becoming more and more
critical as applications increasingly demand low-latency op-
erations at datacenter scale. Examples of such applications
include memory and storage disaggregation [9, 21, 25, 31],
which require latencies as low as O(10µs) at 1M+ IOPs per
server [14], and ML applications that require high network
utilization to keep expensive accelerators busy [37,45]. Large
scale incasts with O(5000) flows [35] caused by shuffle op-
erations [1] and partition-aggregate workflows continue to
be prevalent and need CC to be fair across flows in order
to avoid starvation and control the tail latency, which is crit-
ical for the performance of such applications [20]. Simul-
taneously, CC is becoming more challenging because link

bandwidths are growing faster than buffers at switches [5],
and high-packet-rate servers [3, 24] benefit from simple CC
algorithms offloaded to NICs to save CPU for applications.

Datacenter CC algorithms in deployment today rely on
either end-to-end signals (e.g., delay [35]) or quantized in-
network feedback (e.g., ECN [8]), owing to their simplicity.
An underlying problem with these signals is that they are
aggregated end-to-end across all hops on a flow’s path. Thus,
these CC algorithms react to collective congestion along the
path (for delay) or congestion at any hop on the path at differ-
ent times (for ECN), leading to reducing a flow’s rate before
reaching its fair share in the network. This leads to under-
utilization, slow ramp-up, and/or unfairness in multiple sce-
narios shown in §2.1 and §5.

However, with the emergence of commodity switches that
support in-network telemetry (INT), a new opportunity has
emerged. INT-enabled switches can modify or append to
packet headers to convey information local to the switch,
such as the time the packet spent in the queue. Some state-
of-the-art CC algorithms [7, 40], use INT to gather telemetry
information for every hop to gain more visibility into the net-
work and control the outstanding packets at each hop. Still,
such solutions react to congestion at any hop, which leads to
the unfairness and ramp-up problems mentioned above.

In the last few decades, several schemes have been intro-
duced that leverage help from network switches for better
CC [13, 22, 27, 34, 40] but almost none have been deployed
widely in datacenters. Based on the successful deployment of
ECN-based solutions [8] and no deployments of XCP [34],
RCP [22], and similar AQM solutions, we believe a deploy-
able CC scheme using INT should also have the following
properties: 1) works seamlessly in heterogeneous brownfield
deployments where new switches and old switches co-exist
and provides benefit even if a subset of switches support INT.
2) uses a simple, low-overhead, non-intrusive INT scheme
that requires minimal coordination among applications, net-
working stacks, NICs, and switches.

Therefore, in this paper, we ask the question: How can
we harness the power of INT to design a datacenter CC al-
gorithm that is efficient (high throughput, low latency, and
fast convergence), robust (max-min fairness across traffic pat-
terns including multi-hop and reverse-path congestion), and
practical (simple and deployable)?

We find that learning the congestion state of every hop
of a flow is unnecessary. Instead, an efficient and practical

CC can be realized based on the congestion state of only the
bottleneck hop of a flow – the hop that limits the rate of the
flow as per the max-min fair allocation. It’s worth noting that
a congested hop is not the bottleneck hop for all flows passing
through it, but only for flows that send more than their max-
min fair-share rate, and thus, CC should ideally decrease the
rate of only those flows that send above their fair-share.

Armed with this key insight, we develop a novel INT-
based CC protocol called Poseidon. Poseidon grounds itself in
Swift [35], the state-of-the-art CC that’s deployed in produc-
tion at scale for TCP [17] and kernel-bypass stacks [41]. But
Poseidon advances beyond Swift by leveraging INT instead of
purely E2E measurements, and formalizes an adaptive conges-
tion window update function that compares the max per-hop
delay (obtained via INT) against a rate-adjusted target bottle-
neck hop delay.

This paper makes contributions in two main areas:
First, Poseidon utilizes the power of INT to provide unique
properties, like network-wide max-min fairness, monotonic
fast convergence, and stable rate under high concurrency.
• By comparing the max per-hop delay against a dynamic

target, Poseidon converges to the network-wide max-min
fair allocation, where flows only react to congestion on
their bottleneck hop. A corollary to this is that flows in
Poseidon do not decelerate before reaching their fair-share
rate, resulting in fast convergence.

• Poseidon provides a characterization for the spectrum of
cwnd update and target max per-hop delay functions that
guarantee both fairness and high utilization. This allows us
to explicitly decouple the fairness objective from the rate
increase-decrease function (e.g., AIMD); Poseidon lever-
ages this to use an adaptive increase-decrease function
(without an AI component) that accelerates arriving at the
fair-share allocation and smooths oscillations around it in
the presence of many flows. Poseidon uses a novel target
function, which achieves low queuing delay and high uti-
lization for both sparse workloads (a few fast flows) and
high-concurrency workloads (many slow flows).

• Poseidon is amenable to incremental deployment, including
seamless coexistence in brownfield scenarios.

Second, Poseidon provides a simple, practical, and deployable
design for enabling INT in datacenters for CC.
• We detail an efficient INT mechanism where switches sig-

nal the maximum per-hop queuing delay on a packet’s path,
using only a small and fixed amount of packet header space,
at line rate.

• We analyze requirements for deployable INT for CC and
compare proposed formats against those requirements.
We implemented Poseidon in a production networking

stack (similar to Pony Express [41]) and a testbed with com-
modity programmable switches, with no changes to the NIC
or applications. Our testbed evaluation shows that Poseidon
is robust to reverse-path and multi-hop congestion scenarios
explained in §2.1. In addition, we have evaluated Poseidon

Figure 1: MD on ramping-up flows delays convergence.

extensively in packet-level simulations (§5) and show that,
compared to Swift and HPCC [40], it is robust to the above
scenarios. Relative to Swift, Poseidon improves application-
level message transfer latency by 61% at median and 14.5×
at 99.9p. This is achieved by lowering fabric RTT by more
than 50%, reducing congestion window ramp-up time up to
12×, and decreasing throughput variation for flows with small
windows by up to 70%. In brownfield, Poseidon achieved at
least 50% of the op latency gain of full deployment.

2 Motivation
In this section, we first show how congestion control (CC)
algorithms are inefficient if they cannot distinguish the bottle-
neck hop of a flow from a merely congested hop. Then, we
motivate the importance of brownfield deployment to support
incremental roll-out and highlight why the format of INT is
important for deployment.

2.1 CC Challenges in Datacenters
We use several scenarios in datacenter networks to highlight
how two classes of issues – reacting to signals from hops other
than the bottleneck hop, and increasing with a fixed value –
cause unfairness, low link utilization, and slow ramp-up.

2.1.1 Decelerating Before Reaching Fair-share

Traditionally, when a hop is congested, a flow with a lower
rate (e.g., a new flow) does not increase its rate monotonically
to the fair share; instead, with every congestion signal, its
rate decreases. Figure 1(a) draws an example where a new
flow competes with two existing flows, Figure 1(b) shows the
typical behavior for AIMD algorithms, and Figure 1(c) shows
the data from that experiment in production using Swift. This
behavior prolongs the time for the lower-rate flow to ramp up
and leads to a longer tail flow completion time. The root cause
is that in current CC algorithms, all flows must react the same
way to the congested hop (either increase/decrease) regardless
of their rate. This mechanism is designed to achieve fairness
and stability given an end-to-end signal (e.g., delay, loss, ECN)
without coordination across flows [19]. Poseidon leverages
INT to get a richer signal and allows flows to increase their
rates monotonically until reaching the fair-share rate.

2.1.2 Multi-hop Congestion

Datacenter networks are usually oversubscribed at ToR and
Spine layers [46], thus it is common for a flow to see multiple

Figure 2: A Swift flow facing congestion at multiple hops
(red) cannot compete at congested hops

congested hops in its path, especially in an incast. However,
when a flow faces congestion in more than one hop, it gets
lower throughput than other competing flows that traverse
a single congested hop. The reason is that flows reacting to
loss and ECN [8, 28] from multiple hops see more losses or
marked packets on average, as the drops or markings happen
asynchronously across different congested hops. In Swift, the
fabric delay of such flows is higher, since every congested hop
introduces more delay to the sum. HPCC [40], even though it
uses INT, will also react to congestion at any hop with high
in-flight bytes even if the flow is not contributing much to it.

Figure 2 shows this scenario in an experiment in production
settings using Swift. The red flow (victim), that competes with
the blue flow at the destination, gets much lower throughput
once the green flow starts at the source ToR. The root cause is
that the victim flow reacts to the congestion on Rack 0 uplink
or Rack 10 downlink even when it didn’t get the fair-share.
This is because Swift looks at the end-to-end fabric delay and
the victim’s fabric delay includes both the delay at Rack 0
and Rack 10.1 We observe the same problem even if the flow
reacts to the max hop delay [8, 40] as shown in §5.6. Ideally,
the victim flow should always only react to the congestion at
the hop where it got more than the fair-share.

2.1.3 Reverse-path Congestion
In Figure 3, as we increase the number of flows on the reverse-
path (blue), the forward traffic (red) gets lower throughput and
cannot utilize the bandwidth. The root cause is that the end-
to-end delay used in Swift includes the delay of ACKs in the
reverse-path. Thus, Swift decreases the congestion window as
if it is competing for the forward and reverse path bandwidth.
This issue can happen because of congestion on any hop
in the reverse-path, and can also cause unfairness if only a
subset of flows on a bottleneck see reverse-path congestion,
but is special for CC algorithms that use the end-to-end delay.
A solution is to use synchronized timestamps at hosts (at µs
level) in order to break fabric delay into forward and backward
delays [39], but we show that CC can use INT to separate
congestion signals of forward and reverse path and avoid the
overhead of maintaining a synchronized clock.
Summary of the above three scenarios: many existing CC

1Although the victim flow always faces a higher delay than the other two
flows, its throughput didn’t reach 0. The reason is that flow-scaling, designed
for windows<10 [35], rises victim’s target delay.

Figure 3: Flows react to reverse-path congestion.

algorithms – when using loss, ECN, delay, or INT signals –
react to every congested hop along the path, rather than only
the congestion on the bottleneck hop. To put it another way,
all flows going through a congested hop react the same way,
either increase or decrease their rate, regardless of whether
they have achieved their fair share or not. In §3.1, we show
how Poseidon solves this problem by reacting to congested
hops only for flows that reached their fair share.

2.1.4 Slow Convergence and Throughput Oscillation
An efficient CC algorithm should converge quickly to the
right rate when the flow’s rate is far from it and stay near
it in a stable fashion. However, because many existing CC
algorithms [8, 32, 35, 40] do not know the fair-share rate or
how far they are from that rate, they rely on an AIMD, a
well-understood algorithm that converges to fairness.

However, AIMD causes slow convergence for large win-
dows and an unstable rate for small windows because AIMD
increases the congestion window (cwnd) by a fixed amount
every RTT. On the one hand, as cwnd becomes larger, the
increase ratio compared to the window size becomes smaller:
An increase of 1, takes 5 RTTs to double a window of 5,
but 50 RTTs to double a window of 50. Slow cwnd growth
can be particularly detrimental in workloads that desire high
throughput from a few flows per host (e.g., ring topology in
ML applications). On the other hand, as we increase the num-
ber of flows and get smaller cwnd, the effect of the increase
amplifies for windows close to the additive factor. (Each one
of 500 flows with a window of 1 may double its rate.) This
causes oscillating cwnd in high-degree incast applications
(e.g., shuffle [1]). A CC algorithm may use a combination
of a multiplicative factor and additive factor [7, 40] for faster
ramp-up, but still, the disproportionate effect of the additive
increase component will manifest for a small cwnd.

The root cause is that AIMD was designed to provide fair-
ness regardless of the quality of the signal (e.g., a binary loss
signal in TCP Reno). Yet, it is used in many modern data-
center CC [8, 35], including the ones based on INT [40]. If
we knew the fair-share from switches, we could converge
faster [22, 34], but such solutions are hard to deploy. Instead,
in Poseidon, flows can estimate if they are close or far from
the fair-share and adjust the step size accordingly to converge
faster and have a more stable throughput around the fair-share
rate (§3.3), similar to some previous CC algorithms designed
to facilitate large WAN BDPs [18, 28].

Figure 4: An example of Poseidon MPD signal propagation.

2.2 Deployment
Brownfield deployment. An important requirement for de-
ploying INT in production is to support brownfield deploy-
ments. Hardware may be replaced gradually, from the ToR
level to higher levels, or from one pod to another [26]. This
transition phase can last for years [47]. INT may not be en-
abled on some switches, and at any point, we may want to roll
back to disable INT without coordinating hosts and switches.
Therefore, even if we use a separate queue for the new traf-
fic [35], we still have to address the following requirements:
1. Being able to route the traffic regardless of whether a

switch has INT enabled or not: While two hosts can coor-
dinate their capabilities during a connection’s initial hand-
shake, we don’t want any coordination between hosts and
switches or switches with each other in order to forward
packets and use ECMP. This places a tight requirement on
the format of INT packets, as discussed in §4.2.

2. Getting some gains on an incremental INT deployment:
Even though only a subset of hops supports INT, the CC
algorithm should still benefit from that partial information.

3. Fair interaction between flows that have INT support on
every hop and those that have it only on a subset of hops.

In §4.1, we explain why adjusting the target helps deploy
Poseidon in brownfield. We also present our solution to com-
bine end-to-end delay and max-hop delay to keep fairness
while providing some incremental benefit in brownfield.

Low-overhead non-intrusive INT. For easy deployment,
we prefer coordinating the least number of components and
sustaining minimum overhead. Above, we mentioned that
the traffic must go through the brownfield without any co-
ordination between hosts and switches. At the end-host, we
also want minimum coordination between applications, net-
working stack, and NIC. For example, a fixed INT length is
preferred as it doesn’t change MTU.

We want INT on all packets, so its overhead regarding band-
width and packet processing in the hosts, NIC, and switches
is important. Small INT length is preferred for low bandwidth
overhead and easy deployment in offloaded NICs [10, 11]. Fi-
nally, INT information cannot be encrypted, require complex
functions, or rely on the per-flow state in the switch.

There are multiple formats for supporting INT, two of
which are IFA [36] and P4-INT [2]. These formats differ
in multiple aspects. Instead of proposing yet another format,
we describe the features required for an INT format to be
deployable in a production datacenter for CC. §4.2 covers
these requirements and how the formats satisfy them.

Figure 5: Delay is bounded by the faster flow’s target.

3 Design
Poseidon achieves high link utilization, low queuing delay,
network-wide max-min fairness, with fast convergence and
stable per-flow throughput. In this section, we describe the
design of Poseidon: First, we introduce a key idea that allows
Poseidon to only react to the bottleneck hop (§3.1). Next, we
demonstrate how Poseidon guarantees fairness on a single hop
(§3.2) and how decoupling the fairness from the fixed increase
in AIMD allows us to introduce an adaptive increase/decrease
algorithm that achieves faster convergence and more stable
throughput than AIMD (§3.3). Finally, we show that Poseidon
achieves network-wide max-min fairness (§3.4).

3.1 Key-idea: Only React to Bottleneck Hop
Poseidon only reacts to the bottleneck hop by decreasing
the congestion window only if the flow got the fair-share
on congested hops over its path. We explain how to do that
without knowing the fair-share. Poseidon compares a delay
signal with a target delay to increase or decrease the window.
The key idea is in the definition of the delay signal and target:
1. It applies the target to the maximum per-hop delay

(MPD) to allow flows to react to the most congested hop.
2. It adjusts the target based on the throughput of the flow

to make sure only the flows that get the highest rate on the
hop reduce their windows.

Figure 4 illustrates an example of how max per-hop delay is
propagated. Each packet carries the MPD and each hop up-
dates it. The ACK packet will reflect MPD back to the source.
Note that Poseidon could naturally support heterogeneous
link bandwidth in the network.

Now we describe each point in more detail. Every flow tries
to maintain the maximum per-hop delay (MPD) close to a
maximum per-hop delay target (MPT), namely, increasing
the congestion window when MPD≤MPT to keep the link
busy and decreasing the window when MPD > MPT to limit
the congestion. MPD adds small and fixed overhead to packets
and is one of the important designs to find the bottleneck hop:

In the max-min fair state, the hop with maximum latency is
the bottleneck hop of the flow for Poseidon; otherwise, the
flow has not reached its fair-share along its path (§3.4). The
former case must decrease the congestion window, and the
latter must ignore the congestion and increase the window.
We achieve that by adjusting the target.

Poseidon calculates MPT for each flow based on its rate:
the larger the rate is, the smaller MPT will be (§3.3 defines
the function). This means that flows with higher rates have
lower targets, thus decreasing their window earlier and more
aggressively2. This became possible using INT, as now all
flows competing in the same queue tend to observe the same
congestion signal (per-hop delay). Figure 5 shows an example:
As the arrival rate on the link goes over the line rate at time
t1, a queue builds up. The hop delay grows over the target
of faster flow, red, and forces it to reduce its window at t2.
However, the slower flow, blue, can still increase its window
(solves §2.1.1). Interestingly, this means that given the same
congestion signal from the network, some flows increase and
some decrease their rate. In the next section, we demonstrate
how Poseidon achieves fairness given this flexibility without
relying on an additive increase.

Algorithms 1 shows how Poseidon updates the congestion
window (cwnd). The pacing only happens when the cwnd is
less than 1, similar to Swift [35]. Note that the multiplicative-
increase (MI) happens per packet, thus Line 5 in Algorithm 1
has to approximate the ratio for each packet, while cwnd
decreases happen only once per RTT, thus it is a simple multi-
plication. The retransmit and recovery functions are included
in Appendix A.

3.2 Single-hop Fairness
We show that with the right increase/decrease functions, Po-
seidon can achieve fairness on a single hop. The AIMD algo-
rithm benefits from the fact that all flows either increase rate
with the same amount or decrease rate with the same ratio [19].
However, because of Poseidon’s rate-adjusted target delay and
delay-based increase/decrease function, Poseidon has a new
case, where faster flows decrease rate while slower flows in-
crease rate. This happens if the queuing delay is higher than
the faster flow’s target, but lower than the slower flow’s target.

To prove that Poseidon can achieve fairness, we show that
fairness improves in all possible cases:
1. MPD is low, and all flows increase rate.
2. MPD is high, and all flows decrease rate.
3. MPD is high, some faster flows decrease, other slower

flows increase their rate.
Assume a queue with two flows A and B with rates a and b

where b> a. As a result, the target of A is larger than the target
of B (T (a)> T (b)). In Figure 6, the fairness is graphically de-
fined as the angle between the actual bandwidth share and fair-

2In rare cases, the queuing delay of a port may jump over the target of
both fast and slow flows because of synchronized packet arrival. We make
sure that faster flows with smaller targets decrease more aggressively (§3.3)

Algorithm 1: Poseidon’s Main Algorithm
Input: mpd: maximum per-hop delay,
cwnd: flow’s congestion window size,
rtt: round-trip time,
now: current timestamp
Parameter :min_md: minimum MD ratio,

max_mi: maximum MI ratio,
min_cwnd: minimum cwnd,
max_cwnd: maximum cwnd

1 Function ReceiveACK():
2 mpt← T (cwnd

rtt)
3 update_ratio←U(mpt,mpd)
4 if mpd ≤ mpt then
5 cwnd←

cwnd ∗
(

1+ update_ratio−1
cwnd ∗num_acked

)
6 else
7 if now− t_last_decrease > rtt then
8 cwnd← cwnd ∗update_ratio

9 return cwnd

10 Function Poseidon():
11 cwnd_prev← cwnd
12 if is_ack then
13 cwnd← ReceiveACK()

14 else if is_retransmit then
15 cwnd← RetransmitTimeout()

16 else if is_ f ast_recovery then
17 cwnd← FastRecovery()

18 cwnd← clamp(cwnd,min_cwnd,max_cwnd)
19 if cwnd < cwnd_prev then
20 t_last_decrease← now

21 pacing_delay← 0
22 if cwnd < 1 then
23 pacing_delay← rtt

cwnd

24 return cwnd, pacing_delay

share line. We define the update function U(T (rate),delay)
as the multiplicative factor (where new_cwnd = cwnd×U())
with a specific flow rate and network delay. In order to con-
verge to the line rate, it is ≥ 1 if the delay is less than or equal
to the target and < 1 if the delay is more than the target3.

U(T (rate),delay) =

{
≥ 1,delay≤ T (rate)
< 1,delay > T (rate)

(1)

In all three cases, if we want to guarantee that the fairness
improves, the updated rates should stay in the red triangle

3We assumed, in average, if arrival rate < line rate, delay is low, and if
arrival rate > line rate, delay increases.

Figure 6: Poseidon updates the rate (in the purple area) such that it increases fairness (red) toward the line rate (blue). b) the
queue is under-utilized and both flows increase rates; c) the queue is overloaded, and both flows decrease rates; d) the faster flow
decreases, and the slower flow increases its rate.

(a) AI takes 50 RTTs from 1G to
50G, Poseidon takes around 15 RTTs
and is stable at the fair-share rate.

(b) Poseidon target function has high
resolution over all spectrum of rate
(min-rate=0.02G, max-rate=200G).

Figure 7: The ramp-up using adaptive step sizes is fast and
slows down near the target for stability.

(Figure 6(a)). One side of the triangle is defined by the cur-
rent ratio of rates, and the other side is symmetric across the
fair-share line. If we assume a < b and the delay is D, this
requirement can be written as:

a
b
<

b ·U(T (b),D)

a ·U(T (a),D)
<

b
a
,∀a < b,∀D > 0

a2

b2 <
U(T (b),D)

U(T (a),D)
< 1,∀a < b,∀D > 0

(2)

In summary, Poseidon achieves high link utilization and
fairness if the functions T () and U() satisfy Eq. 1 and Eq. 2.
Figure 6 illustrates Eq. 1, updates that allow full link utiliza-
tion, in blue color, and Eq. 2, updates that converge toward
fairness, in red. The desirable overlapped area is marked in
purple. The additive increase will be in parallel to the fair-
share line, and the multiplicative increase/decrease with the
same ratio stays on the same edge of the red triangle where
the node (a,b) is (Figure 6(a)). For case 1 in Figure 6(b), the
red area ensures the fairness is improved, and the blue area
ensures all flows increase their rate; for case 2 in Figure 6(c),
the blue area ensures all flows decrease their rate; for case 3
in Figure 6(d), the blue area ensures the slower flow increases
rate while the faster flow decreases rate. Next, we introduce a
target function T () and the update function U() which satisfy
the above requirements and have more desirable properties.

3.3 Adaptive Update Steps
Based on §3.2, Poseidon can use any function that satisfies
Eq. 1 and Eq. 2. But we designed the following functions to
leverage the distance between the target and max-hop delay
to not only decide whether to increase or decrease, but also
adjust the update ratio adaptively to reach a better trade-off
between stability and fast convergence. Appendix B proves
that they satisfy Eq. 1 and Eq. 2:

T (rate) = p · ln(max_rate)− ln(rate)
ln(max_rate)− ln(min_rate)

+ k

min_rate < rate < max_rate, p > 0,k > 0
(3)

U(T (rate),delay) = exp
[

T (rate)−delay
p

·α ·m
]

where α = ln(max_rate)− ln(min_rate)
(4)

rate is cwnd ∗MTU/RT T . k defines the minimum target
delay; p tunes the maximum target when the rate is equal to
min_rate and decides how far-apart the target of two flows
with close rate can be. In practice, the target cannot be lower
than a limit without decreasing the throughput because syn-
chronized arrivals can cause premature window decrease. The
target cannot be very large too because a) it can cause packet
drops in switches when the target delay exceeds the queue
capacity; b) as long as we achieve high utilization, we prefer
to back-pressure hosts to leverage other mechanisms such as
load-balancing and admission control for isolation. We use
min_range and max_range to not waste the target range for
differentiating rates that only happen rarely [35]. m defines
the “step” when updating the rate. The larger m is, the slower
the rate of update will be (sensitivity analysis is in §5.6.2).

When |T (rate)− delay| → 0, then U(rate,delay) → 1.
This means when the delay is far away from the target, flows
increase/decrease more drastically for faster convergence, and
when the delay approaches the target delay, the steps will
be more gentle to achieve stable flow rates (solves §2.1.4).
Figure 7(a) shows how the flow can quickly increase its rate
to reach 50 Gbps using the adaptive solution. We explain the
intuition behind the update function with an example. Assume

the rate of a flow is x, and the target delay is D. We define
the target rate r, such that T (r) = D thus U(r,D) = 1. We can
rewrite the update function for the flow as follows (calculation
is in Eq. 11):

U(x,D) =
U(x,D)

U(r,D)
=
(r

x

)m
(5)

Thus, the update function is only related to the ratio of r
and x; when x is far-away from r, the change will be larger.
Poseidon updates the rate of flow from x to r in one RTT, be-
cause x ·U(x,D) = r if m = 1, and for m < 1, it will take more
RTTs because x ·U(x,D)m = r. In this way, the parameter m
controls how fast Poseidon converges to the fair-share rate.

A legitimate alternative for T (rate) is α√
rate +β which is an

extension of the Swift flow-scaling (Appendix §C). However,
we designed Eq. 3 because it gives a meaningful difference
between the target of flows over all rates: The target of a flow
with rate a and c ·a have a fixed difference T (a)−T (c ·a) =
ln(c)/p, providing uniform resolution across all ranges of
rates (Figure 7(b)). This generalizes Swift’s use of 1/

√
cwnd

for target flow scaling (§3.5 of [35]), which only provides
high resolution for small windows. Similarly, an option for
the update function is to use the ratio of target over delay,
similar to Swift. Appendix B.3 shows why distance provides
a better result in high concurrency scenarios.

3.4 Network-wide Max-min Fairness
The key designs of Poseidon to achieve network-wide max-
min fairness are: 1) only react to the max-hop delay; 2) the
target delay of a flow increases when the flow rate decreases.
We will start from the definition of max-min fair and then
show how the above two designs achieve max-min fairness.

Definition 1 (Max-min Fairness [16, 38]). A feasible alloca-
tion of rate~x is “max-min fair” if and only if an increase of
any rate within the domain of feasible allocations must be at
the cost of a decrease of some already smaller rate. Formally,
for any other feasible allocation~y, if ys > xs (s is a flow), then
there must exist another flow s′ such that xs′ ≤ xs and ys′ < xs′ .

For a certain network and workload, the max-min fair allo-
cation is unique [38]. In the max-min fair allocation, for each
flow, there is a unique queue (switch port), which restricts the
rate for that flow. We denote this queue as a flow’s bottleneck,
and the flow’s rate should be the fair-share rate of that queue.
(As a special case, a flow’s bottleneck can also be the source
or destination host, if either of them restricts the rate of the
flow.) Specifically, we can conclude the following Lemma
from the above definition (proved in Appendix D):

Lemma 1. When achieving network-wide max-min fairness,
each flow will have the largest rate among all flows on its
bottleneck hop and not on any other saturated hop.

Formally, for the “max-min fair” allocation~x, for any flow s,
denote the flows that traverse s’ bottleneck as {b1,b2, ...,bk},

Figure 8: The stable state of max-min fairness among 3
switches with 100 Gbps links.

Figure 9: Only the queuing delay on red flows’ bottleneck
(switch 1) can reach red flows’ target.

then for any flow bi, xs ≥ xbi . Denote the flows that traverse
one of the saturated non-bottleneck hops of s as {c1,c2, ...,ck},
then there must exist some c j such that xc j > xs.

With the above definition and Lemma, we first give an
intuition about why Poseidon could converge to the max-min
fair state from any initial state.

With other CC algorithms, the hop with max queuing delay
for a flow may not be the bottleneck hop based on the max-
min fairness. Thus, using INT naively and reacting to the max
delay cannot lead to max-min fairness. However, Poseidon
uses a monotonically decreasing target function, which lets
faster flows have lower target delay. With this design and
Lemma 1, a flow should have the smallest target among all
other flows on its bottleneck, and its target is never the small-
est on other congested hops. Moreover, the delay on a queue
will generally remain close to the minimum target among
all flows on that queue. So gradually, the delay may reach a
flow’s target on its bottleneck; but on other congested non-
bottleneck hops, the delay is not able to reach its target. Thus,
in Poseidon’s final stable state, the max hop delay must
come from flow’s bottleneck. And because each flow only
reacts to its bottleneck, it achieves fairness on the bottleneck
with other flows that have the same bottleneck (§3.2). Then,
the network-wide max-min fairness is achieved by Poseidon.

We provide an example in Figure 8 where green flows have
higher rates than red and blue flows in max-min fair state,
rgreen > rred = rblue, so green flows also have smaller targets,
namely, T (rgreen)< T (rred) = T (rblue). Switch 1 is the bottle-
neck of red and blue flows, and switch 2 is the bottleneck of
green flows. On switch 2, the delay is similar to the target of
green flows, dsw2 ≈ T (rgreen), because the moment the delay
passes the target, green flows reduce their rate. Meanwhile,
red and blue flows have higher targets than the delay dsw2, as
shown in Figure 9(b). This prevents red flows from reacting
to the queuing on switch 2, which means every flow only

reacts to its bottleneck and maintains max-min fairness. This
property of Poseidon solves the problem mentioned in §2.1.2.

Theorem 1. Poseidon converges to the max-min fairness.

To formally prove that the network converges to the max-
min fair state, we use induction to prove that each queue
achieves max-min fair. Denote the max-min fair rate alloca-
tion as ~x, and for each queue, we denote the fastest flow’s
rate on that queue as Rx

q. Then we sort all the k queues
in the network according to Rx

q from smallest to largest:
Rx

q1
≤ Rx

q2
≤ ... ≤ Rx

qk
. For any other flow rate allocation ~y,

with induction: (1) we prove that the queue q1 will converge
to the max-min fair allocation; (2) assuming the queue q1 to
queue qm have already converged to the max-min fair alloca-
tion~x, we prove that the queue qm+1 will also converge to~x.
A detailed proof is provided in Appendix §E.

4 Deployment
Here, we discuss the design decisions that facilitate the de-
ployment of Poseidon in a large-scale datacenter network.
Firstly, Poseidon provides benefits even if only part of the
network supports INT (incremental deployment), and bounds
the unfairness between flows that see INT vs those that do not.
Secondly, Poseidon allows old switches to transparently route
INT traffic, adds minimum overhead to packets and switches,
and requires no changes in applications or NICs.

4.1 Brownfield Deployment
For a network where a subset of switches can provide hop
delay information, Poseidon splits the fabric delay into two
parts: the MPD from switches equipped with INT; and the
delay from the rest of the path. This is calculated based on
the end-to-end delay, using the NIC timestamp similar to
Swift [35], minus the max-hop delay (both forward and back-
ward). Then we apply Poseidon based on the maximum of
the two. Note that this solution is not robust to reverse-path or
multi-hop congestion happening in the hops that do not have
INT, but still provides incremental benefits (§5.5).

The fairness issue is only relevant if the bottleneck hop of
the two flows is the same. Consider two flows A and B and
three switches, X, Y, and Z. A goes through switch X to Z,
and B goes through Y to Z. The common switch, Z, is the
bottleneck, X supports INT and Y doesn’t. If Z has INT, both
flows get the right feedback about Z in max-hop delay. There-
fore, we get partial benefits. If Z doesn’t have INT, the fabric
delay of flow A doesn’t include the delay of X, but for flow
B it will include the delay of Y. Therefore, flow B observes a
high delay and may decrease its window sooner. However, we
argue that this decrease will be minimal and bounded because
of target scaling. As the rate of flow B goes down, its target
will go higher. The moment the target increases by the delay
at hop Y, the rate of flow B will stabilize.

Interestingly, the above argument suggests that in order to
get most of the benefit, we should prioritize deploying INT

in the usual congestion points (ToRs with oversubscribed
uplinks or incast in downlinks). We evaluate this in §5.5.

4.2 A Deployable INT Format for CC
In this section, we describe the requirements for deploying
INT in datacenters for CC and compare existing INT formats.

4.2.1 Requirements
We consider both the INT metadata that we ask from each
hop and how/where we put it inside the packet.

Make INT information available to the sender for CC:
INT metadata on the forward path should be reflected in the
reverse path ACKs for CC signaling. Ideally, ACKs could
reflect opaque information that could be carried in the INT
header but not be replaced by switches. Or, similar to ECN,
INT could be marked by switches in the forward direction
and echoed back to the sender in L4 headers.

Low-overhead INT metadata: For simplicity and precision,
we want INT on all packets, thus its bandwidth and pro-
cessing overhead must be low. Having many metadata fields
per packet adds bandwidth overhead [15] and is costly for
switches, NICs, and offloaded transports to process [11].

Fixed-sized INT metadata: Per-hop INT metadata makes
the number of INT fields not only large but also variable.
This is bad for two reasons: a) It is wasteful to reduce MTU
for the worst case because link failures may add more hops
to packets transiently, so that the number of hops is long-
tailed. A smaller MTU means more packets to be processed
by hosts and switches. b) Variable-sized INT metadata is more
complex to parse at switches, offloaded transports, and mid-
dleboxes if they access bytes after the INT header. Therefore,
for the CC use case, it is essential for an INT format and its
implementation in the switch to use fixed-size INT metadata,
and support aggregation functions (e.g., max/min/sum) that
can overwrite the information from the previous hop.

Implementable in dataplane at line rate: The aggregation
function must require minimal state and computation in the
switch. This means that it must be simple (e.g., max/min/sum)
and not require per-flow state.

Transparent to routing: Many datacenters use a hash-based
scheme (ECMP [30], WCMP [48]) to balance the load over
multiple ports. Such schemes may use the 5-tuple and/or
IPv6 flow label. A brownfield deployment requires a scheme
that balances load efficiently for packets with/without INT
metadata in switches with/without INT support. For switches
without INT support to balance INT traffic, they must be able
to find and parse L4 headers. Thus, we either need to a) put
INT metadata after L4, b) enable switches to pass over the
INT metadata by adding it as a sub-header in headers that
support extensions, such as VLAN-tag, MPLS-tag, IP option,
GRE shim layer, or VXLAN shim layer. We believe option (a)
is easier to deploy as it is transparent to the network, and thus
works with different L2/L3 protocols, with virtualized and

Figure 10: INT packet format in a) In-band Flow Analyzer (IFA) b) P4-INT

non-virtualized traffic, and with other boxes (except special
middleboxes, which are usually implemented in extensible
software anyway [23, 43], and don’t need to parse INT).

Compatible with encrypted packets: Many cloud providers
encrypt network traffic inside datacenters [4]. But switches
must be able to change INT data. Fortunately, recent NIC
encryption modules such as PSP [6] allow passing an offset
in the packet descriptor to only encrypt the bytes after. PSP
also only authenticates the bytes after its header. For UDP
checksum, PSP requires its implementation to support zero
values (thus there’s no need to rely on switches, even though
programmable switches can update that). We also verified
that we can change where the NIC expects the PSP header.

4.2.2 INT formats
Figure 10 shows two predominant INT formats in the context
of IPv4; the IPv6 format is similar. Poseidon is possible on
both formats, but a few improvements help its deployability.

IFA [36] indicates the presence of INT with a special proto-
col value in the IP header and adds part of the header between
the IP and L4 header. P4-INT [2] indicates INT using a DSCP
(traffic class) value/bit and puts all metadata after the L4
header. In order to use ECMP on switches without changing
their configuration, we prefer to not change the location of L4.
Still, IFA can be used on most switches by first changing the
expected location of the UDP header for IFA packets (using
User Defined Fields, UDF) and then rolling out INT. IFA also
supports a format that puts INT metadata at the tail of the
packet to avoid changing the location of L4.

Neither of the formats has a place to reflect the forward
path INT. But given that the switches in the reverse path don’t
need to read the forward path INT, the receiver can just reflect
the INT metadata in L4 headers, and the sender networking
stack will consume it along with the INT metadata.

Neither of the formats defines a max calculation action,
however, they allow extending the action vector.

Finally, we believe an overhead of 12B for sending a 2B
metadata is excessive for small packets and look forward
to working with the community to reduce overhead while
maintaining protocol flexibility.

5 Evaluation
First, §5.1 explains our prototype implementation on a testbed
with a production networking stack and NIC to highlight the

ease of implementation and show the robustness of Poseidon
to multi-hop and reverse-path congestion. Then we use sim-
ulations to explain how and why Poseidon is robust in those
scenarios (§5.2). §5.3 shows that the adaptive window up-
date enables faster convergence and better stability. Next, we
present the aggregate benefit of the above techniques on op la-
tency (flow completion) in multiple scenarios (§5.4). Finally,
we wrap up with brownfield results (§5.5) and a parameter
sensitivity analysis (§5.6). We use Swift, a practical CC de-
ployed at scale, and HPCC, the state-of-the-art in INT-based
CC, as our main points of comparison.
Simulation setup: We implemented Poseidon along with
Swift and HPCC in the OMNeT++ packet simulator and sim-
ulated a Clos network of 200 Gbps links, with 245 ns link
delay (including 230 ns FEC delay), 600 ns switch delay,
64 MB buffer size, and 4096 Bytes MTU size. For Poseidon,
we set the parameters in Eq. 3 and Eq. 4 as p = 40, k = 2,
m = 0.25 based on §5.6.2. For Swift, we follow the best pa-
rameters in [35] and set the base delay to 25 µs, the max flow
scaling to 100 µs, and the hop-based scaling to 1 µs per hop.
We verified the fidelity of the simulator by comparing it to
the result of the testbed. Note that RTT here is calculated
based on NIC timestamp and doesn’t include the delay in the
networking stack at the host. For HPCC parameters, we use
the values from the paper [40]. To be fair in our comparisons,
we enable pacing only when cwnd < 1, similar to Swift4.

5.1 Implementation in Testbed
For the host networking stack, we change Swift implemen-
tation in a transport stack similar to Pony Express [41] to 1) at
the sender, add a 2-bytes INT header for max-hop-delay right
after L4; 2) at the receiver, reflect back the max-hop-delay in
another 2-bytes in the payload; 3) at the sender, update the
congestion window based on Poseidon algorithm in §3.3.

For network switches, we extract the queuing delay at
the egress pipeline and update the max-hop-delay in the INT
header. We implemented the P4 program with only 2 lines of
P4 code (Listing 1) and 16 lines of parser/deparser code in
a Tofino switch. Moreover, we verified that packets with or
without INT headers can both be routed.

Our testbed only has two hosts and one switch (Fig-
ure 11(a)). To simulate congestion from multiple hosts, we cre-
ate 8 virtual interfaces in hosts with 100G links and route the

4HPCC always paces packets, but that is costly in software and hardware.

bit<16> queuing_delay =

(bit<16>) (eg_intr_md.deq_timedelta >> 8);

hdr.telemetry.max_hop_delay =

max(hdr.telemetry.max_hop_delay, queuing_delay);

Listing 1: Core P4 code for telemetry in Poseidon.

Figure 11: Testbed with 8 virtual sender/receiver ports

traffic insides the switch based on the virtual IPs into separate
loopback ports. Each port, loopback at MAC layer, is config-
ured to 10Gbps and plays the role of a virtual sender/receiver
(Figure 11(b)). Ports 0-7 receive traffic from host 1, and ports
8-15 pass the traffic to host 2.
Testbed Results: To create multi-hop and reverse-path con-
gestions from Figure 2 and Figure 3, we route the flows
between virtual senders/receivers as Figure 12(a) and Fig-
ure 13(a) show. For the multi-hop congestions, Poseidon could
fairly share the bandwidth between background flows and the
victim flow, while Swift only spares 0.16 Gbps for the victim
flow in Figure 12(b). For the reverse-path congestion, Posei-
don could achieve line rate for the victim flow, while Swift
could only achieve 1.91 Gbps (similar throughput as the flows
on the reverse-path) as shown in Figure 13(b).

5.2 Robustness From Max-min Fairness
Poseidon achieves fairness in multi-hop congestion. Con-
sider the scenario in Figure 14(a) where we have M green
flows at Rack 0 and N blue flows at Rack 10. We add more
flows to change M and N to create different multi-hop conges-
tion scenarios. With Swift, the moment we have congestion
at multiple hops (M > 0 and N > 0), the victim flow, red,
cannot compete with other flows (Figure 14(b)). The reason is
that Swift reacts to the inflated sum of delays (Figure 14(c)).
Therefore, the victim reduces its congestion window until
its scaled (because of flow-scaling) target delay matches this
larger end-to-end delay. HPCC and DCTCP also react to the
congestion at any hop, thus when M = N, the victim does an
MD when either of the hops gives a congestion signal (ex:
ECN) and cannot achieve the fair rate.

Poseidon, however, allows the victim flow to achieve its
max-min fair share (200Gbps/max(M + 1,N + 1)) by only
reacting to the bottleneck hop where it gets the fair-share.
One reflection is that Poseidon’s congestion signal, max-hop
delay, and target only changes when the bottleneck hop or its
congestion changes. For example, they stay the same when

(a) Victim from virtual host 2 (vh2) contends
with 2 flows on port 16 and 2 flows on port 10.

(b) Victim achieves fair-
share rate in Poseidon.

Figure 12: Multi-hop congestion. (Linerate: 10 Gbps)

(a) 4 flows create a congestion on the victim’s
reverse-path.

(b) Victim achieves liner-
ate (10 Gbps) in Poseidon.

Figure 13: Reverse-path congestion. (Linerate: 10 Gbps)

M changes from 0 to 2, but change when N increases from
2 to 9 in Figure 14(c) and Figure 14(d). Although the victim
flow experiences higher RTT than other flows, Poseidon uses
a higher congestion window to achieve the fair rate. Another
interesting point happens when both hops have the same fair-
share rate (M = N). Although the delay of both hops is close
to the target (Figure 14(d)), with a rate-adjusted target, the
moment the victim reduces its window, Poseidon raises its
target and will not react to the max-hop delay until the rate
increases again. §5.6 shows that both max-hop latency and
scaling the target are necessary to achieve fairness.
Poseidon utilizes forward path regardless of reverse-path
congestion. Reproducing the scenario in Figure 3, Fig-
ure 15(a) shows that with Swift, as the number of flows on
the reverse-path, N, increases, victim’s throughput decreases
to the fair-share rate in reverse-path. However, with Posei-
don, the victim could maintain 200 Gbps (line rate). The
reason is that Poseidon only uses the max-hop delay from
the forward path, which is not affected by the reverse traffic
(Figure 15(b)). HPCC doesn’t have this problem since it only
uses INT information on the forward path.

5.3 Fast Convergence and Stability
Figure 16 shows the rate of flows in Swift and Poseidon as
we add competing flows one by one and then remove them.
At a single hop, not only does Poseidon achieve the fair-share,
similar to Swift, but also lower throughput variation, hence
better stability. Next, we evaluate Poseidon’s convergence
time and throughput stability.
Poseidon converges fast for flows with large windows. Fig-
ure 17(a) shows the ramp-up phase of a flow, growing its
window to a large value. This flow is competing with another
one on a 200G link. First, the ramp-up shows that Poseidon
does fewer rate reductions than Swift and HPCC. Second,
it shows that Poseidon achieves a super-linear ramp-up at

(a) Multi-hop congestion scenario (b) Victim flow’s rate (c) Victim’s delay signal (d) Victim’s target & per-hop delays

Figure 14: Multi-hop congestion with the same or different fair-share rate on different hops (linerate: 200 Gbps).

(a) Victim’s rate is protected by Po-
seidon (linerate: 200 Gbps) from the
congestion on the reverse-path.

(b) Victim’s congestion signal never
changes for Poseidon, despite in-
creasing delay on the reverse-path.

Figure 15: Reverse-path congestion: N reverse flows

(a) Single hop fairness in Swift (b) Single hop fairness in Poseidon

Figure 16: Fairness on a single hop with step-in&out flows,
throughput is measured every 50 µs.

the beginning, and the rate of growth decreases as it reaches
the fair-share rate as expected in Figure 7(a). As a result,
Poseidon converges around 12× faster than Swift and HPCC.
Poseidon achieves stable throughput for flows with small
windows. Figure 17(b) shows the throughput for a flow com-
peting with N−1 others on a hop. Poseidon reduces the stan-
dard deviation of throughput by 24× for N = 200 (70% on
average over the four cases). As mentioned in §3.3, the reason
is that AIMD in Swift and HPCC becomes more aggressive
for smaller congestion windows. By contrast, Poseidon uses
an adaptive update ratio to adjust the congestion window.
Poseidon keeps link utilization high with low RTT. Posei-
don achieves a smaller RTT than Swift for flows across differ-
ent rates, which means lower latency for small messages. For
example, Figure 18 compares the RTT over different num-
bers of flows in two cases: large window and small window.
Swift cannot use a very low target delay because, for high link
utilization, it has to accommodate the summation of delays
on multiple hops and the variation of delay in a high-degree
incast caused by AI (Figure 17(b)). Since the adaptive up-
date ratio can stabilize the rate, Poseidon could afford to use
a tighter target and achieve high link utilization and small

(a) Fast convergence for big windows (b) Stability under high concurrency

Figure 17: Poseidon achieves fast convergence for flows with
large windows & stable rate for flows with small windows.

(a) Large window: +1 flow per 25ms (b) Small wnd: +50 flows per 25ms

Figure 18: Poseidon achieves lower RTT than Swift by keep-
ing queues short and stable.

queues at the same time. HPCC, however, achieves lower
RTT than Poseidon as it targets near-zero in-network queues
at the cost of op latency (§5.4).

5.4 Application-level Improvements
A key application-level performance metric is op latency,
namely, the time from a message was enqueued for sending
to its completion [22]. We create two scenarios on two racks
(A and B) with 3:1 oversubscription and compare op latency
for 128 KB messages:

1) Uniform Random (UR): Rack A sends 960 Gbps to
Rack B (60% uplink load), while Rack B sends 480 Gbps to
Rack A (30% uplink load). The source and destination hosts
are randomly chosen. Poseidon has a 61% lower median and
14.5× lower 99.9p op latency than Swift (PLB [44] enabled),
44% lower median and 5.49× lower 99.9p op latency than
HPCC in Figure 19(a). This mostly comes from robustness to
reverse-path and multi-hop congestion.

2) Uniform Random with Rotating Incast (UR+RI): A and
B communicate similar to UR scenario, but Rack A also suf-
fers from rotating incast from 100 hosts in other racks (not
A or B). The incast traffic has 100 flows with 0.5 Gbps load

(a) Uniform random (UR) (b) UR + Rotating Incast (RI)

Figure 19: Poseidon improves op latency (FCT)

(50G in aggregate) and changes its target after sending a mes-
sage from each host. Poseidon achieves 56% faster median
and 41× lower 99.9th op latency for UR traffic than Swift
(PLB [44] enabled), 51% faster median and 6.25× lower
99.9p op latency than HPCC in Figure 19(b). Besides being
robust to reverse-path congestion, Poseidon allows UR flows
to ramp up faster than Swift when the rotating incast targets
another victim.

5.5 Brownfield Evaluation
With brownfield deployments, Poseidon achieves partial per-
formance gains over Swift. We repeat the UR scenario ex-
plained in §5.4 over 4 racks. There are 24 hosts in each rack
connected through 6 hops to hosts in other racks. Only ToRs
have 3:1 oversubscription. Figure 20(a) compares the op la-
tency of Poseidon with INT at all switches vs. Poseidon in the
brownfield where only 2 or 4 ToRs support INT. It shows that
Poseidon can achieve most of the gains compared to Swift in
the brownfield.

To evaluate the fairness scenarios in §4.1, we use the topol-
ogy in Figure 14(a) and enable INT only on Rack 10. We
make sure all blue flows send to the same host and all green
flows send to another to create congestion on multiple hops
for them. In Figure 20(b), when M = 2,N = 9, the bottleneck
of red and blue flows is on Rack 10 that has INT, thus vic-
tim and other blue flows reach the fair rate (20 Gbps). When
M = 9,N = 2, the bottleneck of red and green flows is on
Rack 0, which doesn’t have INT, and brownfield Poseidon
gives a little more bandwidth to the red flow because the green
flows have to react to the end-to-end delay. The unfairness
is bounded because green flows increase their target until it
covers the sum of delay on their congested hops.

5.6 Sensitivity Analysis
5.6.1 Ablation Study
To show the importance of each major aspect of the Poseidon
design, we use the same algorithm and parameters as Posei-
don, but remove one design aspect each time: 1) maximum
per-hop delay (MPD) information instead of RTT; 2) rate-
adjust target for per-hop delay; and 3) adaptive increase
ratio algorithm instead of AIMD.

Figure 21(a) compares the throughput in the multi-hop
scenario (Figure 14(a)). It shows that network-wide fairness
is only achieved when using both rate-based target scaling

(a) Message op latency shrinks when
more switches are equipped with INT
capability.

(b) Unfairness is bounded when the
bottleneck is not on the INT-capable
switches.

Figure 20: Partial gains and fairness in brownfield Poseidon

and max hop delay. However, removing the adaptive update
ratio will not harm the max-min fairness, and Poseidon can
achieve fairness even using AIMD. Figure 17 has already
shown that AIMD slows down ramp-up and causes wider
throughput variations in the presence of many flows.

5.6.2 Robustness of Parameters
Though Poseidon could achieve the design targets with a
wide range of functions and parameters, it is worthwhile to
understand the trade-off of each parameter. In this section, we
vary the three parameters in Eq. 3 and Eq. 4 and show why
we choose: p = 40, k = 2, and m = 0.25.

ppp controls the range of target scaling, affecting round-trip
time and rate variation. Figure 21(b) shows that when we
have congestion from hundreds of flows, a higher p allows
reacting to rate unfairness faster and reduces rate variations.
However, that means enduring larger RTT in the network.

kkk avoids under-utilizing the link bandwidth. Figure 21(c)
shows the utilization % when we have a few flows on the
bottleneck (where the rate is close to max_rate thus the target
is close to k) vs. the fabric RTT when we have hundreds of
flows. For small k values, the fluctuation of the queuing delay
may lead to link under-utilization as the target is low and
flows reduce the congestion window conservatively. However,
if the value of k is too large, the RTT will increase.

mmm determines the trade-off between the variance of flow
rates and the convergence speed. Figure 21(d) compares the
convergence time in Figure 17(a) experiment and rate varia-
tion in Figure 17(b) for different values of m. Larger m values
improve stability as they dampen the effect of the target in
Eq. 4 but also slow down convergence.

6 Related Work
Delay-based: Swift [35], the basis of Poseidon, is a state-of-
the-art delay-based algorithm that relies on hardware times-
tamps from NICs. Swift has some elements of Poseidon, al-
though for different purposes. 1) It separates fabric delay from
engine delay and tracks a separate congestion window for
each. However, this separation was because of fundamental
differences in congestion at fabric hops vs. hosts, and doesn’t
address fabric issues explained in §2.1. 2) Swift uses a larger
target delay for flows with smaller congestion windows to
address synchronized packet arrival from many flows on a

(a) Ablation study (b) p: maximum target scaling (c) k: base target (d) m: update intensity

Figure 21: Ablation study in multi-hop congestion scenario and sensitivity analysis over three parameters.

bottleneck link (flow scaling for windows <10), which forces
flows to converge to the same window. Appendix §C shows
even if we combine flow-scaling with max-hop latency, Swift
still faces unfairness. 3) For multiplicative decrease, Swift
decrease depending on how far the delay is from the (almost
fixed) target, but still uses a fixed step for additive increase. At
a higher level, Swift only looks at the end-to-end delay while
Poseidon uses max-per hop latency and rate-based target scal-
ing to respond to the bottleneck hop. Copa [12] adjusts the
target rate based on end-to-end delay to achieve short queues
and fair allocation, but Poseidon compares the max-hop delay
to a rate-adjust target to reach network-wide max-min fairness.

ECN-based: ECN can be seen as a one-bit INT signal from
switches that is set based on a configurable threshold inside
switches. It is successfully deployed in datacenters and used
by end-to-end CC algorithms such as DCTCP [8] because
ECN was non-intrusive (two bits in the IP header) and those
algorithms were deployable in brownfield environments. Still,
ECN-based algorithms do not recognize the bottleneck hop
and all flows react to any hop in their path that marks packets.

Richer signals from switches: XCP [34] and RCP [22] get
help from switches to enable flows to react to congestion
and achieve the fair-share allocation. In particular, XCP intro-
duced the idea of decoupling utilization from fairness. How-
ever, both proved difficult to deploy in datacenters because
of the lack of a brownfield solution and the overhead in high-
speed switches. Poseidon achieves fairness using target scal-
ing and introduces adaptive update ratios to reach better sta-
bility. It is deployable in brownfield and requires minimal
changes in hardware to support max-hop delay in INT.

HPCC [40] uses queue length, timestamp, and tx-bytes
of each hop to estimate in-flight bytes on each link and up-
date a congestion window in an AIMD fashion in order to
achieve very low queuing in the network. However, HPCC
doesn’t recognize the bottleneck hop: high utilization on any
hop along the path should not force a flow that didn’t get the
link’s fair-share to reduce rate. In addition, HPCC assumes
all flows experience the same base RTT, relies on the additive
increase to achieve fairness, doesn’t address brownfield de-
ployment, and requires bandwidth and CPU overhead from
three INT metadata per hop. In contrast, by using a novel
target-scaling solution, Poseidon achieves fairness without
relying on AIMD, supports brownfield deployment, and only

needs a single max hop delay per packet. PowerTCP [7] ar-
gues that CC should react to both absolute CC signal and its
change rate to avoid slow reaction or overreaction to queue
build-up. Poseidon’s adaptive update ratio in Figure 7(a) ad-
dresses this issue. PowerTCP similar to HPCC still looks at
congestion at any hop and uses per-hop INT metadata.
Receiver-driven: NDP [29] and HOMA [42] face challenges
in oversubscribed networks where may have congestion in the
core. However, Poseidon is insensitive to over-subscription,
and we expect similar gains on op latency by applying Posei-
don’s idea to receiver-driven schemes.
Combined with schedulers: HOMA [42] combines a CC
algorithm with a scheduling policy that prioritizes the short-
est remaining flows to achieve shorter flow completion time.
While Poseidon is currently a pure CC algorithm, we believe
it has the potential to be integrated with similar scheduling
policies and preserve the benefits of fast convergence and
robust performance.

7 Conclusion
We proposed Poseidon, a congestion control algorithm that re-
duces op latency through fast convergence and lower latency
and is robust in multi-hop and reverse-path congestion by
leveraging in-band network telemetry (INT) in a novel way.
Poseidon only needs a single max-hop delay per packet from
INT, which makes it easily deployable with low overhead.
We showed how INT packets can be deployed in brownfield
and how Poseidon can still gain from an incremental deploy-
ment. In the future, we plan to implement Poseidon in NIC
offloading protocols (e.g., RDMA), leverage INT to break
down the delay at end-host networking stacks, use INT to
hint path changes to avoid hash collisions [33], and apply
the target scaling idea to other congestion signals, such as
in-flight bytes [40], to achieve lower in-network delay.

This work doesn’t raise any ethical issues.

Acknowledgment
We would like to thank our shepherd Paolo Costa and the
anonymous NSDI reviewers for providing valuable feedback.
We thank the production, serving, and support teams at Google
for their contributions to the work and the platform. T. S.
Eugene Ng is partially supported by the NSF under CNS-
2214272 and CNS-1815525.

References
[1] How Distributed Shuffle improves scalability and

performance in Cloud Dataflow pipelines, 2018.
https://cloud.google.com/blog/products/data-
analytics/how-distributed-shuffle-improves-
scalability-and-performance-cloud-dataflow-
pipelines.

[2] In-band Network Telemetry (INT) Dataplane Spec-
ification, 2020. https://p4.org/p4-spec/docs/
INT_v2_1.pdf.

[3] Amazon EC2: Linux accelerated comput-
ing instances: Networking performance, 2021.
https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/accelerated-computing-
instances.html#gpu-network-performance.

[4] Encryption in Transit in Google Cloud ,
2021. https://cloud.google.com/security/
encryption-in-transit.

[5] Tomahawk4 / bcm56990 series, 2021. https:
//www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-
series.

[6] PSP Architecture Specification, 2022. https://
github.com/google/psp.

[7] Vamsi Addanki, Oliver Michel, and Stefan Schmid. Pow-
erTCP: Pushing the performance limits of datacenter
networks. In NSDI, 2022.

[8] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In SIGCOMM, 2010.

[9] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
far memory improve job throughput? In EuroSys, 2020.

[10] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed NICs. In NSDI, 2020.

[11] Serhat Arslan, Stephen Ibanez, Alex Mallery,
Changhoon Kim, and Nick McKeown. NanoTransport:
A low-latency, programmable transport layer for NICs.
In SOSR, 2021.

[12] Venkat Arun and Hari Balakrishnan. Copa: Practical
Delay-Based congestion control for the internet. In
NSDI, 2018.

[13] Sanjeewa Athuraliya, Victor H Li, Steven H Low, and
Qinghe Yin. REM: Active queue management. In
Teletraffic Science and Engineering, volume 4, pages
817–828. 2001.

[14] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Commun. ACM, 60(4):48–54, 2017.

[15] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang
Li, Gianni Antichi, Minian Yu, and Michael Mitzen-
macher. PINT: Probabilistic in-band network telemetry.
In SIGCOMM, 2020.

[16] Dimitri Bertsekas and Robert Gallager. Data networks.
Athena Scientific, 2021.

[17] Neal Cardwell, Yuchung Cheng, et al. BBR Up-
date:1: BBR.Swift; 2: Scalable Loss Handling. IETF
109. https://datatracker.ietf.org/meeting/
109/materials/slides-109-iccrg-update-on-
bbrv2-00, Nov 2020.

[18] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based congestion control. ACM Queue, 14,
September-October:20 – 53, 2016.

[19] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN sys-
tems, 17(1):1–14, 1989.

[20] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56:74–80, 2013.

[21] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memory.
In NSDI, 2014.

[22] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. SIGCOMM Comput. Commun. Rev., 36(1):59–62,
2006.

[23] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In NSDI, 2016.

[24] Vishal Fadia and Philip Wells. Turbo boost your com-
pute engine workloads with new 100 gbps networking,
2021. https://cloud.google.com/blog/products/
networking/increasing-bandwidth-to-c2-and-
n2-vms.

https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-network-performance
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/encryption-in-transit
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://github.com/google/psp
https://github.com/google/psp
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms

[25] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In OSDI, 2016.

[26] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan M. G. Wassel, Zhehua Wu, Sunghwan
Yoo, Raghuraman Balasubramanian, Prashant Chandra,
Michael Cutforth, Peter Cuy, David Decotigny, Rakesh
Gautam, Alex Iriza, Milo M. K. Martin, Rick Roy,
Zuowei Shen, Ming Tan, Ye Tang, Monica Wong-Chan,
Joe Zbiciak, and Amin Vahdat. Aquila: A unified, low-
latency fabric for datacenter networks. In NSDI, 2022.

[27] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Niko-
laidis, Mohammad Alizadeh, and Thomas E Anderson.
Backpressure flow control. In NSDI, 2022.

[28] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[29] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
SIGCOMM, 2017.

[30] Christian Hopps. Analysis of an equal-cost multi-path al-
gorithm. Technical report, RFC 2992, November, 2000.

[31] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP ≈ RDMA: CPU-efficient remote storage
access with i10. In NSDI, 2020.

[32] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 18(4):314–
329, 1988.

[33] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and
Fabien Duchene. FlowBender: Flow-level adaptive rout-
ing for improved latency and throughput in datacenter
networks. In CoNEXT, 2014.

[34] Dina Katabi, Mark Handley, and Charlie Rohrs. Conges-
tion control for high bandwidth-delay product networks.
In SIGCOMM, 2002.

[35] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Mike
Ryan, David J. Wetherall, and Amin Vahdat. Swift:
Delay is simple and effective for congestion control in
the datacenter. In SIGCOMM, 2020.

[36] J. Kumar, S. Anubolu, J. Lemon, R. Manur,
H. Holbrook, A. Ghanwani, D. Cai, H. ou, and

Y. Li X. Wang. Inband flow analyzer, 2021.
https://datatracker.ietf.org/doc/html/draft-
kumar-ippm-ifa.

[37] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In NSDI, 2021.

[38] Jean-Yves Le Boudec. Rate adaptation, congestion con-
trol and fairness: A tutorial. on line, 2000.

[39] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In OSDI, 2020.

[40] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
SIGCOMM. ACM, 2019.

[41] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Mike Dalton,
Nandita Dukkipati, William C. Evans, Steve Gribble,
Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl
Mauer, Emily Musick, Lena Olson, Mike Ryan, Erik
Rubow, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: a microkernel ap-
proach to host networking. In SOSP, 2019.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM, 2018.

[43] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud scale load bal-
ancing. In SIGCOMM, 2013.

[44] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen
Yin, Qiaobin Fu, Gautam Kumar, Masoud Moshref, Jun-
hua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. PLB: Congestion signals are simple and effec-
tive for network load balancing. In SIGCOMM, 2022.

[45] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
In-Network aggregation. In NSDI, 2021.

https://datatracker.ietf.org/doc/html/draft-kumar-ippm-ifa
https://datatracker.ietf.org/doc/html/draft-kumar-ippm-ifa

[46] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. Jupiter Rising: A decade of clos topologies and
centralized control in Google’s datacenter network. In
SIGCOMM, 2015.

[47] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jef-
frey C. Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks.
In NSDI, 2019.

[48] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-
bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.
WCMP: Weighted cost multipathing for improved fair-
ness in data centers. In EuroSys, 2014.

A Poseidon Algorithm
Algorithms 2 shows the RetransmitTimeout and FastRecovery
functions called in Algorithm 1 for completeness.

Algorithm 2: Poseidon’s CWND Update Algorithms

1 Function RetransmitTimeout():
2 retransmit_count← retransmit_count +1
3 if retransmit_count ≥

RET X_RESET _T HRESHOLD then
4 cwnd′← min_cwnd

5 else
6 if now− t_last_decrease > rtt then
7 cwnd′← cwnd ∗min_md

8 return cwnd′

9 Function FastRecovery():
10 retransmit_count← 0
11 if now− t_last_decrease > rtt then
12 cwnd′← cwnd ∗min_md

13 return cwnd′

B A Valid Cluster of Functions
We prove that the cluster of functions in Eq. 3 and Eq. 4
satisfy Eq. 1 and Eq. 2.

The target functions are:

T (x) = p∗ ln(max_rate)− ln(x)
ln(max_rate)− ln(min_rate)

+ k

min_rate < x < max_rate, p > 0,k > 0
(6)

Then we give a cluster of update functions, which is specif-
ically designed for the above target functions:

U(x,D) = exp
[

T (x)−D
p

·α ·m
]

where α = ln(max_rate)− ln(min_rate)
(7)

B.1 Proof for Target Functions
When delay D≤ T (x):

U pdate(x,D) = exp
[

T (x)−D
p

·α ·m
]
≥ 1 (8)

When delay D > T (x):

U pdate(x,D) = exp
[

T (x)−D
p

·α ·m
]
< 1 (9)

Thus, Eq. 3 satisfies Eq. 1.

B.2 Proof for Update Functions
Without loss of generality, assume two flows’ rates a < b,
delay is D.

For the rhs, since T(a) > T(b):

U(b,D)

U(a,D)
=

exp
[

T (b)−D
p ·α ·m

]
exp
[

T (a)−D
p ·α ·m

]
= exp

[
T (b)−T (a)

p
·α ·m

]
< 1

(10)

For the lhs:

U(b,D)

U(a,D)
=

exp
[

T (b)−D
p ·α ·m

]
exp
[

T (a)−D
p ·α ·m

]
= exp

[
T (b)−T (a)

p
·α ·m

]
= exp

[
p · ln(a)− ln(b)

α
· 1

p
·α ·m

]
= exp [m · (ln(a)− ln(b))]

= exp
[
m · ln(a

b
)
]

=
(a

b

)m

(11)

So as long as m < 2, we can have

U(b,D)

U(a,D)
=
(a

b

)m
>

a2

b2
(12)

Thus, Eq. 4 satisfies Eq. 2.

B.3 Updating Based on Ratio vs. Distance
A valid update function with the same target function as in
Eq. 3 is to use the ratio of target and max-hop delay. This can
be seen as an extension of the Swift’s MD function.

U(T (rate),delay) =
T (rate)+m
delay+m

,m≥ 0 (13)

A problem with Eq. 13 is that it scales its update ratio
depending on the value of delay. As an example, suppose
that m is negligible, and we went 1 µs above the target. If the
target is 4, the update ratio will be 0.8, but if the target is 30
(high concurrency scenario), the update ratio will be 0.968.

This means that for high concurrency scenarios where fair-
share rate is low, and the target is high, the convergence will
be slow. For example, Figure 22 compares the op latency in
UR+RI scenario introduced in §5.4 for the update function
based on the distance in Eq. 4 vs. the function based on the
ratio in Eq. 13. The update function based on the distance
clearly has an advantage at the tail.

C Flow Scaling in Swift
Swift uses flow scaling to inflate target delay to compensate
for synchronized packet arrivals. The authors in [35] noticed

Figure 22: Poseidon can achieve lower op latency using the
update function based on the distance of targe and max-hop-
delay

that the average queue length grows as O(
√

N) where N is
the number of flows on a link. Swift adjusts the target in
proportional to 1/

√
cwnd because it argues that the cwnd

trend is inversely proportional to the number of flows when
Swift converged to its fair-share. The flow scaling in Swift
also helps fairness as it speeds slow flows with a larger target,
and slows fast flows with a smaller target. However, the flow
scaling of Swift is not applicable to max-hop delay to find the
bottleneck hop because of two reasons: 1) Its effect is nominal
for windows > 10 (See Figure 5 in [35]) and more importantly
2) The formulation that reached 1/

√
cwnd assumes, at fair-

share, flows see the same RTT (≈target delay) and pushes
them to have the same cwnd. However, to solve the scenarios
in §2.1 and get the fair-share, we only need to react to the
congestion at the bottleneck hop. This means that flows get
different RTTs and pushing flows to get the same cwnd cannot
achieve the fair share rate (rate = cwnd

RT T). For example, in the
fair-share allocation of multi-hop congestion scenario, the
victim flow will have higher RTT and needs higher cwnd to
achieve the fair-share.

We show this shortcoming in the following equations. Sup-
pose that the link capacity is C, and the congestion window
and RTT for flow i are cwndi and RT Ti. The target delay is
calculated as follows, where tbase is the base delay in Swift
and A is just a constant.

t = tbase +A ·
√

N
C

(14)

Fair share for flow i =
cwndi

RT Ti
=

C
N

(15)

If we assume that at the steady state RT Ti is equal to t
(target delay) for all flows and thus cwnds are equal to w in
order to get the same throughput, we can estimate

√
N from

Eq. 15 as follows

√
N =

A+
√

A2 +4 ·C ·w · tbase

2 ·w
(16)

Therefore,
√

N can be estimated by α√
w +β.

However, as explained above, to achieve fair-share rate,
flows get different RTTs thus converging to the same conges-
tion window is not fair. Now, we show that if we follow the

(a) Rate of the victim flow (b) CWND of the victim flow
Figure 23: Compare scaling the target using the rate or con-
gestion window in Poseidon.

formulation of how Swift reached 1/
√

cwnd for cases that
flows have different RTTs at fair share, we end up with a valid
Poseidon rate-based scaling. We repeat Eq. 14 here as Eq. 17
after changing t to thop to emphasize that for Poseidon we
have a target for per-hop delay.

thop = thop_base +A ·
√

N
C

(17)

If we combine Eq. 17 and Eq. 15 we get

thop = thop_base +
A√
C
.

√
RT Ti

cwndi
=

α√
cwndi
RT Ti

+β (18)

cwndi
RT Ti

in Eq. 18 is the rate of flow i. Therefore, for the
flow scaling of Swift to work in a fair-share setting where
flows can have different RTTs, the target should increase in
reverse relation to rate not just cwnd. Figure 23 compares
the throughput and congestion window of the victim flow in
Poseidon if it uses the above target function using rate vs
cwnd in the multi-hop congestion scenario (Figure 14(a)).
The victim and N = 9 flows start at time 0. Then at 50 ms,
M = 5 flows start to create congestion at the source rack.
Figure 23(b) shows that after 50ms, target scaling based on
the rate converged to a higher cwnd to keep the throughput
the same for the victim flow.

Eq. 18 is a special case of T (b) = p ·bq + k, a valid cluster
of functions that satisfy Eq. 1 and Eq. 2 for −2≤ q < 0, with
q =−0.5. However, we believe Poseidon’s function in Eq. 3
is a better function as explained in §3.3.

D Proof of Lemma 1
We first repeat the Lemma here: When achieving network-
wide max-min fairness, each flow will have the largest rate
among all flows on its bottleneck hop and not on any other
saturated hop. Formally, for the “max-min fair” allocation~x,
for any flow s, denote the flows shared the same bottleneck
with s as {b1,b2, ...,bk}. For any flow bi, xs ≥ xbi . Denote
the flow’s share on the saturated non-bottleneck hop of s
as {c1,c2, ...,ck}, then there must exist some c j such that
xc j > xs.

Proof: Assume there exists a flow s that has reached its fair-
share rate r, and there is another flow s′ on its bottleneck hop
with an even larger rate r′. But this state is not max-min fair

because flow s could get some bandwidth from flow s′ and let
them have the same rate r+r′

2 . By contradiction, the flow s has
the largest rate on its bottleneck hop.

On the other hand, assume there exists a flow s, which is
the fastest flow, with rate r, on one of the non-bottleneck hops.
However, given that this link is congested, its fair-share flows
with rate r′ could obtain bandwidth from flow s and increase
their fair-share rate to at least r+n·r′

n+1 , where n is the number
of fair-share flows. By contradiction, the flow s cannot be the
largest flow on its non-bottleneck hop.

E Proof of Convergence to Max-min Fairness
Problem description:

For any network topology, any traffic pattern (flows’ source
and destination, routing), given an initial flow rate allocation,
Poseidon converges to the max-min fair allocation.
Notations:

Denote all the link bandwidth as B;
Denote the target for flow with rate r as T (r);
Denote a flow rate allocation as~y;
In allocation~y, denote the rate of flow f as y f ;
In allocation ~y, denote the maximum flow rate on a satu-

rated queue q as Ry
q;

In allocation~y, denote the delay on a queue q as Dy
q;

Denote the max-min fair rate allocation as~x;
In max-min fair allocation ~x, denote the maximum flow

rate on a saturated queue q as Rx
q, which is also the fair-share

rate of that port.
Designs of Poseidon and observations:

Design 1: Poseidon reacts to the maximum hop delay along
the path.

Design 2: In Poseidon, the target of a flow increases when
the flow rate decreases. And Poseidon decreases the flow rate
when the delay is higher than the flow’s target; increases the
rate when the delay is lower than the target.

Observation 1: The queuing delay on a saturated port is no
larger than the target of flows with the fastest rate on that port.

Observation 1 holds true because of design 2: if the delay
exceeds the target of a flow, that flow will decrease its rate
immediately. However, in Poseidon, the decrease operation
only happens once per RTT, so the reaction of decreasing rate
may happen at most one RTT later. But this will not affect the
overall trend of queuing.

Observation 2: the queuing delay on an unsaturated port is
always 0.

Observation 2 holds true when senders send packets with-
out bursts. However, the synchronized arrival of many flows
may create a transient queue. But the queue will disappear
within 1 RTT, because the average data sent within one RTT
is less than the line rate.
Proof:

We will use induction to prove any allocation~y will con-
verge to max-min fair allocation~x.

In allocation ~x, if we sort the saturated queues based on
their maximum flow rate (fair-share rate), we can get:

Rx
q1
≤ Rx

q2
≤ ...≤ Rx

qk
(19)

T (Rx
q1
)≤ T (Rx

q2
)≤ ...≤ T (Rx

qk
) (20)

(1) prove queue q1 will converge to the max-min fair
allocation:

For any allocation~y, for queue q1, its fastest flow’s rate is
Ry

q1 . Note that this q1 is still the same q1 sorted by allocation
~x.

Because the queue q1 is saturated in~y, it has to satisfy:

∑
f∈Flows(q1)

y f ≥ B (21)

And we already know:

∑
f∈Flows(q1)

x f = B (22)

Because in allocation~x, all the flows on queue q1 has the
same rate, which is Rx

q1
. Any other allocation~y’s largest rate

cannot be as small as Rx
q1

because their rates are not all equal,
so we have:

Ry
q1
≥ Rx

q1
(23)

Dy
q1
= T (Ry

q1
)≤ T (Rx

q1
) = Dx

q1
(24)

Because of the same reason, we also have:

Dy
qi
= T (Ry

qi
)≤ T (Rx

qi
) = Dx

qi
,∀i ∈ [2,k] (25)

So for flows whose rates are smaller than Rx
q1

, their target
is higher than delay on queue q1 and also delay on any other
queue qi:

T (y f)> T (Rx
q1
)≥ Ry

q1
,∀y f < Rx

q1
(26)

T (y f)> T (Rx
q1
)≥ T (Rx

qi
)≥ Ry

qi
,∀y f < Rx

q1
,∀i ∈ [2,k] (27)

Thus, those flows with smaller rate will keep increasing
and flows with larger rate than Rx

q1
will decrease because of

the delay on queue q1 or on other queues. Eventually, all of
them will converge to the same target:

T (y f) = T (Rx
q1
),∀ f ∈ q1 (28)

So that:

T (Ry
q1
) = T (Rx

q1
) (29)

Thus, we show that the queue q1 will converge to the max-
min fair allocation x

(2) Assume queue q1 to qm have already converged,
prove queue qm+1 will converge:

Assume queue q1 to qm have already converged to max-min
fair allocation~x, so we have:

T (Ry
qi
) = T (Rx

qi
),∀i ∈ [1,m] (30)

For queue qm+1, the flows whose bottleneck is qm+1 will
not travel queue q1 to qm. Because if they travel to one of
those ports, those ports will have a higher fair-share rate,
which contradicts the max-min fair allocation’s conclusion.

Thus, with a similar analysis as the proof for step 1, we
have:

T (y f)> T (Rx
qm+1

)≥ Ry
qm+1

,∀y f < Rx
qm+1

(31)

T (y f)> T (Rx
q1
)≥ T (Rx

qi
)≥ Ry

qi
,∀y f < Rx

q1
,∀i ∈ [m+2,k]

(32)
So that, the flows with smaller rate than Rx

qm+1
will increase

their rate, while flows with larger rate will decrease their rate,
until:

T (y f) = T (Rx
qm+1

),∀ f ∈ q1 (33)

So that:

T (Ry
qm+1

) = T (Rx
qm+1

) (34)

So we proved that queue qm+1 will also converge to max-
min fair allocation~x.

In conclusion, all the ports in allocation ~y will eventu-
ally converge to the max-min fair allocation~x.

	Introduction
	Motivation
	CC Challenges in Datacenters
	Decelerating Before Reaching Fair-share
	Multi-hop Congestion
	Reverse-path Congestion
	Slow Convergence and Throughput Oscillation

	Deployment

	Design
	Key-idea: Only React to Bottleneck Hop
	Single-hop Fairness
	Adaptive Update Steps
	Network-wide Max-min Fairness

	Deployment
	Brownfield Deployment
	A Deployable INT Format for CC
	Requirements
	INT formats

	Evaluation
	Implementation in Testbed
	Robustness From Max-min Fairness
	Fast Convergence and Stability
	Application-level Improvements
	Brownfield Evaluation
	Sensitivity Analysis
	Ablation Study
	Robustness of Parameters

	Related Work
	Conclusion
	Poseidon Algorithm
	A Valid Cluster of Functions
	Proof for Target Functions
	Proof for Update Functions
	Updating Based on Ratio vs. Distance

	Flow Scaling in Swift
	Proof of Lemma 1
	Proof of Convergence to Max-min Fairness

